Hypoxia is a feature of the microenvironment of a growing tumor. The transcription factor NFkappaB is activated in hypoxia, an event that has significant implications for tumor progression. Here, we demonstrate that hypoxia activates NFkappaB through a pathway involving activation of IkappaB kinase-beta (IKKbeta) leading to phosphorylation-dependent degradation of IkappaBalpha and liberation of NFkappaB. Furthermore, through increasing the pool and/or activation potential of IKKbeta, hypoxia amplifies cellular sensitivity to stimulation with TNFalpha. Within its activation loop, IKKbeta contains an evolutionarily conserved LxxLAP consensus motif for hydroxylation by prolyl hydroxylases (PHDs). Mimicking hypoxia by treatment of cells with siRNA against PHD-1 or PHD-2 or the pan-prolyl hydroxylase inhibitor DMOG results in NFkappaB activation. Conversely, overexpression of PHD-1 decreases cytokine-stimulated NFkappaB reporter activity, further suggesting a repressive role for PHD-1 in controlling the activity of NFkappaB. Hypoxia increases both the expression and activity of IKKbeta, and site-directed mutagenesis of the proline residue (P191A) of the putative IKKbeta hydroxylation site results in a loss of hypoxic inducibility. Thus, we hypothesize that hypoxia releases repression of NFkappaB activity through decreased PHD-dependent hydroxylation of IKKbeta, an event that may contribute to tumor development and progression through amplification of tumorigenic signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1643842 | PMC |
http://dx.doi.org/10.1073/pnas.0602235103 | DOI Listing |
J Immunol Res
January 2025
Department of Microbiology, Immunology and Genetics Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
Inflammation is a critical response of the immune system to infection or injury, serving to repair and restore tissue homeostasis. While acute inflammation generally protects against harmful stimuli, prolonged and chronic inflammation have detrimental effects and disrupts tissue homeostasis. Due to the complex and multifactorial etiology of chronic inflammation, effective treatment remains elusive.
View Article and Find Full Text PDFJ Vet Med Sci
January 2025
Department of Small Animal Internal Medicine II, School of Veterinary Medicine, Kitasato University.
This study investigated the anti-inflammatory effects of water-dispersible hesperetin (WD-Hpt) in an endotoxin-induced uveitis (EIU) rat model. The rats were orally administered 10, 25, or 50 mg/kg WD-Hpt immediately after lipopolysaccharide (LPS) injection at the concentration of 200 μg. Clinical scores, cellular inflammation, the aqueous humor (ApH) protein concentration, as well as the levels of tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) in AqH, and histopathological grades were assessed.
View Article and Find Full Text PDFJ Exp Med
February 2025
Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France.
IKKα, encoded by CHUK, is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. The absence of IKKα causes fetal encasement syndrome in humans, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and causes combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Basic Medical Sciences, Guangzhou University of Chinese Medicine Guangzhou 511400, China.
The aim of this study was to investigate the underlying mechanism of chrysophanol(Chr) in reducing inflammation and foam cell formation induced by oxidized low-density lipoprotein(ox-LDL) and to investigate the targets and pathways related to effects of Chr on coronary atherosclerosis, providing a theoretical basis for the development of new clinical drugs. RAW264.7 macrophages were cultured in vitro, and after determining the appropriate concentrations of Chr and ox-LDL for treating RAW264.
View Article and Find Full Text PDFNat Commun
January 2025
Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China.
Phenazine biosynthesis-like domain-containing protein (PBLD) and Cedrelone have been identified as tumor suppressors. However, their roles in virus infection remain unclear. Here, we demonstrate that PBLD upregulates the type I interferon (IFN-I) response through activating NF-kappaB (NF-κB) signaling pathway to resist viral infection in cells and mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!