Most secreted archaeal proteins are targeted to the membrane via a tripartite signal composed of a charged N terminus and a hydrophobic domain, followed by a signal peptidase-processing site. Signal peptides of archaeal flagellins, similar to class III signal peptides of bacterial type IV pilins, are distinct in that their processing sites precede the hydrophobic domain, which is crucial for assembly of these extracytoplasmic structures. To identify the complement of archaeal proteins with class III signal sequences, a PERL program (FlaFind) was written. A diverse set of proteins was identified, and many of these FlaFind positives were encoded by genes that were cotranscribed with homologs of pilus assembly genes. Moreover, structural conservation of primary sequences between many FlaFind positives and subunits of bacterial pilus-like structures, which have been shown to be critical for pilin assembly, have been observed. A subset of pilin-like FlaFind positives contained a conserved domain of unknown function (DUF361) within the signal peptide. Many of the genes encoding these proteins were in operons that contained a gene encoding a novel euryarchaeal prepilin-peptidase, EppA, homolog. Heterologous analysis revealed that Methanococcus maripaludis DUF361-containing proteins were specifically processed by the EppA homolog of this archaeon. Conversely, M. maripaludis preflagellins were cleaved only by the archaeal preflagellin peptidase FlaK. Together, the results reveal a diverse set of archaeal proteins with class III signal peptides that might be subunits of as-yet-undescribed cell surface structures, such as archaeal pili.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797317 | PMC |
http://dx.doi.org/10.1128/JB.01547-06 | DOI Listing |
Environ Microbiome
January 2025
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
Background: Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored.
View Article and Find Full Text PDFCannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of cannulae and of protein assemblies derived from recombinant cannula-like proteins.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.
View Article and Find Full Text PDFBiol Res
January 2025
Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166, Rome, Italy.
Background: Acinetobacter baumannii poses a significant threat globally, causing infections primarily in healthcare settings, with high mortality rates. Its adaptability to antibiotic resistance and tolerance to various stresses, including reactive oxygen species (ROS), contribute to its persistence in healthcare environments. Previous evidence suggested that the periplasmic heat shock protein, HslJ-like protein (ABUW_2868), could be involved in oxidative stress defense in A.
View Article and Find Full Text PDFCRISPR J
January 2025
Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA.
Bacteria and archaea acquire resistance to genetic parasites by preferentially integrating short fragments of foreign DNA at one end of a Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR). "Leader" DNA upstream of CRISPR loci regulates transcription and foreign DNA integration into the CRISPR. Here, we analyze 37,477 CRISPRs from 39,277 bacterial and 556 archaeal genomes to identify conserved sequence motifs in CRISPR leaders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!