The effects of cholesterol (Chol) on phospholipid bilayers include ordering of the fatty acyl chains, condensing of the lipids in the bilayer plane, and promotion of the liquid-ordered phase. These effects depend on the type of phospholipids in the bilayer and are determined by the nature of the underlying molecular interactions. As for Chol, it has been shown to interact more favorably with sphingomyelin than with most phosphatidylcholines, which in given circumstances leads to formation of lateral domains. However, the exact origin and nature of Chol-phospholipid interactions have recently been subjects of speculation. We examine interactions between Chol, palmitoylsphingomyelin (PSM) and palmitoyl-oleoyl-phosphatidylcholine (POPC) in hydrated lipid bilayers by extensive atom-scale molecular dynamics simulations. We employ a tailored lipid configuration: Individual PSM and Chol monomers, as well as PSM-Chol dimers, are embedded in a POPC lipid bilayer in the liquid crystalline phase. Such a setup allows direct comparison of dimeric and monomeric PSMs and Chol, which ultimately shows how the small differences in PSM and POPC structure can lead to profoundly different interactions with Chol. Our analysis shows that direct hydrogen bonding between PSM and Chol does not provide an adequate explanation for their putative specific interaction. Rather, a combination of charge-pairing, hydrophobic, and van der Waals interactions leads to a lower tilt in PSM neighboring Chol than in Chol with only POPC neighbors. This implies improved Chol-induced ordering of PSM's chains over POPC's chains. These findings are discussed in the context of the hydrophobic mismatch concept suggested recently.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1783890 | PMC |
http://dx.doi.org/10.1529/biophysj.106.088427 | DOI Listing |
J Chromatogr A
December 2024
HUN-REN Molecular Interactions in Separation Science Research Group, Ifjúság útja 6, H-7624 Pécs, Hungary; Department of Analytical and Environmental Chemistry and Szentágothai Research Center, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary; Institute of Bioanalysis, Medical Scool, University of Pécs, Szigeti út, H-7624 Pécs, Hungary. Electronic address:
Non-destructive chromatographic methods were used to determine the hold-up volumes of four self-packed columns containing embedded phosphate groups. The stationary phases are named Diol-P-C10, Diol-P-C18, Diol-P-Benzyl and Diol-P-Chol. The hydrophobicity of organic ligands bound to the phosphate group increases in the benzyl< decyl < octadecyl
Cureus
December 2024
Genetics/Bioinformatics, Sidra Medicine, Ar-Rayyan, QAT.
Background And Aim: Growth factor receptor-bound protein 7 (GRB7) belongs to a group of adaptor proteins characterized by their conserved multidomain structure. These proteins are involved in cellular signaling pathways that regulate cell growth, proliferation, and differentiation. Alterations in GRB7 expression have been linked to multiple human cancers.
View Article and Find Full Text PDFDiscov Oncol
December 2024
Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China.
Background: ZBTB11 is a putative transcription factor with an N-terminal BTB domain and tandem C-terminal zinc finger motifs. Recent studies have suggested a potential role for ZBTB11 in tumorigenesis. However, the biological significance of ZBTB11 in different cancer types remains uncertain.
View Article and Find Full Text PDFLipids Health Dis
December 2024
Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan, China.
Background: Inhibiting cholesterol metabolism has shown great potential in non-small cell lung cancer (NSCLC). However, the regulatory mechanism of the lipid metabolism key factor Sect. 14-like lipid binding 2 (SEC14L2) in NSCLC remains unclear.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
This study introduces the synthesis and characterization of advanced silica core-shell nanostructures, with an emphasis on the innovative Si-ACS (Silica Acorn Core-Shell) design and its modified counterparts. Employing the classic Stöber method, SiCore particles were first produced, followed by the creation of the acorn-like Si-ACS structures. A key aspect of this research is the exploration of the effects of CTAB and TEOS concentrations on the morphology and properties of the silica shells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!