Expression of the gamma-globin gene is silenced in adult humans. However, certain point mutations in the gamma-globin gene promoter are capable of maintaining expression of this gene during adult erythropoiesis, a condition called non-deletion hereditary persistence of fetal hemoglobin (HPFH). Among these, the British form of HPFH carrying a T-->C point mutation at position -198 of the Agamma-globin gene promoter results in 4-10% fetal hemoglobin in heterozygotes. In this study, we used nuclear extracts from murine erythroleukemia cells to purify a protein complex that binds the HPFH -198 gamma-globin gene promoter. Members of this protein complex were identified by mass spectrometry and include DNMT1, the transcriptional coactivator p52, the protein SNEV, and RAP74 (the largest subunit of the general transcription factor IIF). Sp1, which was previously considered responsible for HPFH -198 gamma-globin gene activation, was not identified. The potential role of these proteins in the reactivation and/or maintenance of gamma-globin gene expression in the adult transcriptional environment is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819221PMC
http://dx.doi.org/10.1074/jbc.M610404200DOI Listing

Publication Analysis

Top Keywords

gamma-globin gene
24
gene promoter
16
fetal hemoglobin
12
hereditary persistence
8
persistence fetal
8
gene
8
protein complex
8
hpfh -198
8
-198 gamma-globin
8
gamma-globin
6

Similar Publications

Dias-Logan syndrome with a p.Leu360Profs*212 heterozygous pathogenic variant of in a Chinese patient: A case report.

SAGE Open Med Case Rep

January 2025

Department of Reproductive Medicine, Zhejiang Provincial Hospital of Integrated Traditional Chinese and Western Medicine & Hangzhou Red Cross Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.

Dias-Logan syndrome, also known as intellectual developmental disorder with persistence of fetal hemoglobin (HbF), or -related intellectual developmental disorder, is an extremely rare neurogenetic disorder characterized by intellectual disability (ID), delayed psychomotor development, variable dysmorphic features, and asymptomatic persistence of fetal hemoglobin. The prevalence and incidence of this condition are currently unknown. We report an 8-year-old Han Chinese male patient with Dias-Logan syndrome who carries a heterozygous pathogenic variant, c.

View Article and Find Full Text PDF
Article Synopsis
  • The CRISPR-Cas9 system is a groundbreaking gene editing tool being researched for treating thalassemia and sickle cell disease (SCD).
  • A study reviewed clinical trials from multiple databases, identifying 6 eligible studies involving 115 patients, which used CRISPR/Cas9 to target specific gene enhancers and promoters.
  • Results showed that patients experienced increased fetal hemoglobin, improved hemoglobin levels, transfusion independence in thalassemia, and reduced pain episodes in SCD, indicating the potential of CRISPR/Cas9 as a one-time functional cure for these blood disorders.
View Article and Find Full Text PDF

MYB represses ζ-globin expression through upregulating ETO2.

Acta Biochim Biophys Sin (Shanghai)

January 2025

Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.

Reactivating the embryonic ζ-globin gene represents a potential therapeutic approach to ameliorate the severe clinical phenotype of α-thalassemia and sickle cell disease. The transcription factor MYB has been extensively proven to be a master regulator of the γ-globin gene, but its role in the regulation of ζ-globin remains incompletely understood. Here, we report a mechanistic study on the derepression of ζ-globin both and .

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD) and β-thalassemia patients with elevated gamma globin (HBG1/G2) levels exhibit mild or no symptoms. To recapitulate this natural phenomenon, the most coveted gene therapy approach is to edit the regulatory sequences of HBG1/G2 to reactivate them. By editing more than one regulatory sequence in the HBG promoter, the production of fetal hemoglobin (HbF) can be significantly increased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!