Objectives: Passenger vehicle driver death rates per million vehicle registrations declined steadily during calendar years 1985-2004. The present study sought to separate the effect of vehicle design changes from this trend.

Methods: Restricting the trend to a fixed set of model years removed the vehicle design effects, but there were still effects due to vehicle aging. Risk of driver death was found to increase each year vehicles aged, probably due to changes in vehicle use patterns.

Results: After separating out the vehicle design effects and making adjustments for the vehicle age effects, a different picture emerged of trends in death rates over time. Absent the vehicle design changes, the historical decline in driver fatality risk would have ended in 1993, with risk climbing ever since. This underlying trend has been obscured by changes in the vehicle fleet.

Conclusions: The push for vehicle improvements has been worthwhile and can be credited with saving thousands of lives. However, the analysis shows that the gains in occupant protection from vehicle design improvements have been offset partially by an increasingly risky environment in recent years. Therefore, more attention needs to be paid to programs targeting improvement in roadway design and driver behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15389580600943369DOI Listing

Publication Analysis

Top Keywords

vehicle design
20
vehicle
13
driver death
12
risk driver
8
death rates
8
design changes
8
design effects
8
changes vehicle
8
design
6
driver
5

Similar Publications

Bacterial Leaf Blight (BLB) usually attacks rice in the flowering stage and can cause yield losses of up to 50% in severely infected fields. The resulting yield losses severely impact farmers, necessitating compensation from the regulatory authorities. This study introduces a new pipeline specifically designed for detecting BLB in rice fields using unmanned aerial vehicle (UAV) imagery.

View Article and Find Full Text PDF

Ultralight flexible 3D nickel micromesh decorated with NiCoP for high stability alkaline zinc batteries.

Nanoscale

January 2025

National Engineering Research Center for High-Efficiency Grinding, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.

Rechargeable alkaline zinc batteries are emerging as promising candidates for next-generation energy storage systems, owing to their affordability, eco-friendliness and high energy density. However, their widespread application is hindered by stability challenges, particularly in alkaline environments, due to cathode corrosion and deformation, as well as dendrite formation and unwanted side reactions at the Zn anode. To address these issues, we successfully developed a 3D nickel micromesh-supported NiCoP (3D NM@NiCoP) electrode.

View Article and Find Full Text PDF

Ultra-high electrostriction and ferroelectricity in poly (vinylidene fluoride) by 'printing of charge' throughout the film.

Nat Commun

January 2025

State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China.

Electrostriction is an important electro-mechanical property in poly (vinylidene fluoride) (PVDF) films, which describes the proportional relation between the electro-stimulated deformation and the square of the electric field. Generally, traditional methods to improve the electrostriction of PVDF either sacrifice other crystalline-related key properties or only influence minimal regions around the surface. Here, we design a unique electret structure to fully exploit the benefits of internal crystal in PVDF films.

View Article and Find Full Text PDF

Tailless control of a four-winged flapping-wing micro air vehicle with wing twist modulation.

Bioinspir Biomim

January 2025

Aerospace Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea (the Republic of).

This paper describes the tailless control system design of a flapping-wing micro air vehicle in a four-winged configuration, which can provide high control authority to be stable and agile in flight conditions from hovering to maneuvering flights. The tailless control system consists of variable flapping frequency and wing twist modulation. The variable flapping frequency creates rolling moments through differential vertical force from flapping mechanisms that can be independently driven on the left and right sides.

View Article and Find Full Text PDF

This paper proposes a new strategy for analysing and detecting abnormal passenger behavior and abnormal objects on buses. First, a library of abnormal passenger behaviors and objects on buses is established. Then, a new mask detection and abnormal object detection and analysis (MD-AODA) algorithm is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!