Homeostatic signaling systems are thought to interface with the mechanisms of neural plasticity to achieve stable yet flexible neural circuitry. However, the time course, molecular design, and implementation of homeostatic signaling remain poorly defined. Here we demonstrate that a homeostatic increase in presynaptic neurotransmitter release can be induced within minutes following postsynaptic glutamate receptor blockade. The rapid induction of synaptic homeostasis is independent of new protein synthesis and does not require evoked neurotransmission, indicating that a change in the efficacy of spontaneous quantal release events is sufficient to trigger the induction of synaptic homeostasis. Finally, both the rapid induction and the sustained expression of synaptic homeostasis are blocked by mutations that disrupt the pore-forming subunit of the presynaptic Ca(V)2.1 calcium channel encoded by cacophony. These data confirm the presynaptic expression of synaptic homeostasis and implicate presynaptic Ca(V)2.1 in a homeostatic retrograde signaling system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673733 | PMC |
http://dx.doi.org/10.1016/j.neuron.2006.09.029 | DOI Listing |
J Transl Med
January 2025
Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Protective brain barriers, such as blood-brain barrier, become dysfunctional with age. The BBB is a dynamic and selective barrier, gating the passage of molecules and cells to and from the brain. The function of this barrier is critical for the maintenance of brain homeostasis.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most prevalent form of late-life dementia. The ε2 allele of the APOE gene encoding apolipoprotein E (APOE2) is associated with lower susceptibility to AD among the three genotypes (ε2, ε3, ε4), while APOE4 is the strongest genetic risk factor for late-onset AD. APOE plays a critical role in maintaining synaptic plasticity and neuronal function by controlling lipid homeostasis, with APOE2 having a superior function.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: While disease-modifying treatments that reduce Aβ have been recently approved by the FDA, the identification of novel therapeutic targets and strategies that target underlying mechanisms to delay the AD development are still needed. Abnormal brain energy homeostasis and mitochondria dysfunction are observed early in AD. Therefore, the development of treatments to restore these defects could be beneficial.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Janssen Research & Development, A Division of Janssen Pharmaceutica, Beerse, Belgium, Beerse, Belgium.
Background: Microglial cells have emerged as key players in the pathogenesis of Alzheimer's disease (AD). They act as a first line defense and fulfil a crucial role during brain development and circuit homeostasis. Microglia are involved in the removal of debris, control neural activity, regulate synaptic plasticity, and synapse pruning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!