Myricetin (3,3',4',5,5',7-hexahydroxyflavone), a flavonoid compound, is present in vegetables and fruits. By means of alkaline phosphatase (ALP) activity, osteocalcin, and type I collagen enzyme-linked immunosorbent assay (ELISA), we have shown that myricetin exhibits a significant induction of differentiation in MG-63 and hFOB human osteoblasts. Alkaline phosphatase and osteocalcin are phenotypic markers for early-stage differentiated osteoblasts and terminally differentiated osteoblasts, respectively. Our results indicate that myricetin stimulates osteoblast differentiation at various stages, from maturation to terminally differentiated osteoblasts. Induction of differentiation by myricetin is associated with increased bone morphogenetic protein-2 (BMP-2) production. The BMP-2 antagonist noggin blocked myricetin-mediated ALP activity and osteocalcin secretion enhancement, indicating that BMP-2 production is required in myricetin-mediated osteoblast maturation and differentiation. Induction of differentiation by myricetin is associated with increased activation of SMAD1/5/8 and p38 mitogen-activated protein kinases. Cotreatment of p38 inhibitor SB203580 inhibited myricetin-mediated ALP upregulation and osteocalcin production. In conclusion, myricetin increased BMP-2 synthesis, and subsequently activated SMAD1/5/8 and p38 MAPK, and this effect may contribute to its action on the induction of osteoblast maturation and differentiation, followed by an increase of bone mass.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2006.10.020DOI Listing

Publication Analysis

Top Keywords

induction differentiation
12
differentiated osteoblasts
12
osteoblast differentiation
8
bone morphogenetic
8
mitogen-activated protein
8
alkaline phosphatase
8
alp activity
8
activity osteocalcin
8
terminally differentiated
8
differentiation myricetin
8

Similar Publications

DOCK5 (dedicator of cytokinesis 5), a guanine nucleotide exchange factor for Rac1, has been implicated in BMP2-mediated osteoblast differentiation, but its specific role in osteogenesis and bone regeneration remained unclear. This study investigated the effect of DOCK5 on bone regeneration using C21, a DOCK5 chemical inhibitor, and Dock5-deficient mice. Osteoblast differentiation and bone regeneration were analyzed using bone marrow mesenchymal stem cells (BMSCs) and various animal models.

View Article and Find Full Text PDF

Objective: To elucidate the association between the changes in intracellular metabolism in the early stage of B cell activation and systemic lupus erythematosus (SLE) pathogenesis.

Methods: CD19 or CD19CD27 (naïve) cells from the peripheral blood of healthy controls and lupus patients were cultured under different stimuli. The changes in intracellular metabolism and signalling pathways in these cells were evaluated.

View Article and Find Full Text PDF

Background/aim: Regulatory T cells (Tregs) play a crucial role in inflammatory responses by regulating the activity of various immune cells. M2 macrophages induced by IL-10 and TGF-β exhibit anti-inflammatory functions and induce Treg differentiation. Although the beneficial effects of 3-bromo-4,5-dihydroxybenzaldehyde (BDB) on various diseases have been widely reported, the mechanisms, through which it alleviates allergic contact dermatitis (ACD) via Tregs and macrophages, are not well understood.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) damage is a prevalent phenomenon that has been proven to be implicated in a wide spectrum of diseases. However, the progressive attenuation of probe signals in response to mtDNA damage within living cells inherently limits the sensitivity and precision of current probes for detecting mtDNA damage. Herein, we employ an innovative organelle signal ratio imaging approach, utilizing the mitochondria-nucleus migration probe MCQ, to achieve unparalleled sensitivity in detecting mtDNA damage in living cells.

View Article and Find Full Text PDF

RAP-2 and CNH-MAP4 Kinase MIG-15 confer resistance in bystander epithelium to cell-fate transformation by excess Ras or Notch activity.

Proc Natl Acad Sci U S A

January 2025

Department of Translational Medical Sciences, School of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030.

Induction of cell fates by growth factors impacts many facets of developmental biology and disease. LIN-3/EGF induces the equipotent vulval precursor cells (VPCs) in to assume the 3˚-3˚-2˚-1˚-2˚-3˚ pattern of cell fates. 1˚ and 2˚ cells become specialized epithelia and undergo stereotyped series of cell divisions to form the vulva.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!