A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. | LitMetric

In this study, we expressed two cellulase encoding genes, an endoglucanase of Trichoderma reesei (EGI) and the beta-glucosidase of Saccharomycopsis fibuligera (BGL1), in combination in Saccharomyces cerevisiae. The resulting strain was able to grow on phosphoric acid swollen cellulose (PASC) through simultaneous production of sufficient extracellular endoglucanase and beta-glucosidase activity. Anaerobic growth (0.03h(-1)) up to 0.27gl(-1) DCW was observed on medium containing 10gl(-1) PASC as sole carbohydrate source with concomitant ethanol production of up to 1.0gl(-1). We have thus demonstrated the construction of a yeast strain capable of growth on and one-step conversion of amorphous cellulose to ethanol, representing significant progress towards realization of one-step processing of cellulosic biomass in a consolidated bioprocessing configuration. To our knowledge, this is the first report of a recombinant strain of S. cerevisiae growing on pure cellulose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2006.08.005DOI Listing

Publication Analysis

Top Keywords

amorphous cellulose
8
saccharomyces cerevisiae
8
hydrolysis fermentation
4
fermentation amorphous
4
cellulose
4
cellulose recombinant
4
recombinant saccharomyces
4
cerevisiae study
4
study expressed
4
expressed cellulase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!