To elucidate the mechanisms underlying cross-clade T-cell reactivity, we evaluated responses to Gag peptides based on clades A, B, C, and M-group sequences at the epitope level by IFN-gamma ELISpot assay in 25 subjects following primary clade B infection. T-cell reactivity to CON (consensus), COT (center of tree), and ANC (most recent common ancestor) B peptides was similar and a high level of cross-reactivity was noted to clade A, C, and M-group peptides. T-cell responses to 15 of the 16 epitopes reacted with at least 1 of the 2 heterologous peptides (A or C or both) and 7 epitopes were invariant across all 3 clades. The remaining 9 epitopes were associated with a total of 11 variant sequences, and with the exception of 1, all substitutions were outside the HLA anchor positions. We conclude that Gag-specific cross-clade T-cell responses producing IFN-gamma can be detected in primary HIV-1 infection. Cross-reactivity is attributable to the recognized epitopes being either invariant across clades or differing by single amino acid substitutions outside the HLA anchor sites. Semi-conservative and non-conservative substitutions that presumably involve the T-cell receptor contact sites have significant effects on T-cell recognition. Finally, further studies are needed to determine if the detection of cross-clade IFN-gamma T-cell responses indeed translates to cross-reactive antiviral activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2006.07.045 | DOI Listing |
Probiotics Antimicrob Proteins
January 2025
Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
Research into the role of probiotics-often referred to as "living supplements"-in cancer therapy is still in its early stages, and uncertainties regarding their effectiveness remain. Relevantly, chemopreventive and therapeutic effects of probiotics have been determined. There is also substantial evidence supporting their potential in cancer treatment such as immunotherapy.
View Article and Find Full Text PDFJ Exp Med
March 2025
Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Activation of CD8+ T cells necessitates rapid metabolic reprogramming to fulfill the substantial biosynthetic demands of effector functions. However, the posttranscriptional mechanisms underpinning this process remain obscure. The transfer RNA (tRNA) N1-methyladenine (m1A) modification, essential for tRNA stability and protein translation, has an undefined physiological function in CD8+ T cells, particularly in antitumor responses.
View Article and Find Full Text PDFSci Immunol
January 2025
Department of Immunology, Harvard Medical School; Boston, MA, USA.
Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (T) compartment in the meninges.
View Article and Find Full Text PDFGlia
January 2025
Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia.
View Article and Find Full Text PDFImmunology
January 2025
Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore.
Cancer is one of the leading causes of death worldwide. In recent years, immune checkpoint inhibitor therapies, in addition to standard immuno- or chemotherapy and surgical approaches, have massively improved the outcome for cancer patients. However, these therapies have their limitations and improved strategies, including access to reliable cancer vaccines, are needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!