Can chicken and human PrPs possess SOD-like activity after beta-cleavage?

Biochem Biophys Res Commun

Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50383 Wroclaw, Poland.

Published: January 2007

The prion protein is a membrane attached glycoprotein that is involved in binding of divalent copper ions. In vivo human and chicken PrPs exhibit SOD-like activity associated with octarepeat and hexarepeat regions, respectively, when bind Cu(II) ions. However, the species of Cu(II)-PrP involved in the Cu(II) center which determines the highest SOD-like activity is still unknown. The data presented here clearly show that the single Cu(II) ion bound to PrP octapeptide repeat region of mammalian prion and hexapeptide repeat region of avian prion via 4 His side-chain imidazoles reveals the highest SOD activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2006.11.003DOI Listing

Publication Analysis

Top Keywords

sod-like activity
12
repeat region
8
chicken human
4
human prps
4
prps possess
4
possess sod-like
4
activity
4
activity beta-cleavage?
4
beta-cleavage? prion
4
prion protein
4

Similar Publications

Polydeoxyribonucleotide (PDRN) has emerged as a potent bioactive compound with proven efficacy in wound healing, tissue regeneration, and anti-inflammatory applications and is predominantly derived from salmonid gonads. However, this study presents a groundbreaking advancement by successfully extracting and characterizing PDRN from microbial sources, specifically , marking the first report to utilize microbial-, biome-, or -derived PDRN (L-PDRN). The findings demonstrate the enhanced biological properties of L-PDRN over traditional salmon-derived PDRN across several assays.

View Article and Find Full Text PDF

Nanozymes with specific catalytic activity inhibit inflammation and promote wound healing efficiently and safely. In this work, multifunctional manganese-based nanozymes (MnGA) with antioxidant properties were successfully constructed via a simple coordination reaction in which manganese chloride was used as the manganese source and gallic acid (GA) was used as the ligand solution. MnGA possesses both catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) activities and a reactive nitrogen species (RNS) scavenging capacity, which enables it to efficiently inhibit the inflammatory response.

View Article and Find Full Text PDF

Oxidative stress and inflammatory dysregulation play crucial roles in pathogenesis of acute lung injury (ALI), and their cyclic synergy drives excessive inflammatory responses and further exacerbates ALI. Therefore, new effective strategies to treat ALI are urgently needed. Herein, a novel synergistic selenium based chlorogenic acid nanoparticle was developed to disrupt the cyclic synergistic effect between oxidative stress and inflammatory response in ALI.

View Article and Find Full Text PDF

Biomolecular Microneedle Initiates FeO/MXene Heterojunction-Mediated Nanozyme-Like Reactions and Bacterial Ferroptosis to Repair Diabetic Wounds.

Adv Sci (Weinh)

January 2025

Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Reactive oxygen species (ROS) play a dual role in wound healing. They act as crucial signaling molecules and antimicrobial agents when present at moderate levels. However, excessive levels of ROS can hinder the healing process for individuals with diabetes.

View Article and Find Full Text PDF

Prussian Blue Nanozyme Featuring Enhanced Superoxide Dismutase-like Activity for Myocardial Ischemia Reperfusion Injury Treatment.

ACS Nano

January 2025

Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.

The blood flow, when restored clinically following a myocardial infarction (MI), disrupts the physiological and metabolic equilibrium of the ischemic myocardial area, resulting in secondary damage termed myocardial ischemia-reperfusion injury (MIRI). Reactive oxygen species (ROS) generation and inflammatory reactions stand as primary culprits behind MIRI. Current strategies focusing on ROS-scavenging and anti-inflammatory actions have limited remission of MIRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!