Two new, octadentate, water-soluble, macrocyclic ligands, 1,4,7,10-tetrakis((2S)-(-)-2-hydroxy-3-[3'-(N,N,N-trimethylammonium)-phenoxy]-propyl)-1,4,7,10-tetraazacyclododecane tetratriflate, ((S)-tmappc12 triflate, L1 triflate) and 1,4,7,10-tetrakis((2S)-(-)-2-hydroxy-3-[2'-sulfo-4'-methylphenoxy]-propyl)-1,4,7,10-tetraazacyclododecane, ((S)-sthmppc12, L2H4) have been prepared with a view to using them to study anion sequestration in aqueous solution. Their pKa and metal-ion binding constant values with a range of alkaline earth, transition, and post-transition metals are reported. The eight-coordinate, water-soluble Cd(II) complexes of (L1)4+ and (L2)4-, [CdL1](CF3SO3)6 and (NH4)2-[CdL2], the former cationic and the latter anionic, have both been shown to be capable of acting as anion receptors in aqueous solution. The binding constant values (log(K/M-1) given in parentheses) for binding by the cationic receptor to a range of aromatic anions in water are p-nitrophenolate (1.7), p-formylphenolate (2.1), p-nitrobenzoate (3.0), p-aminobenzoate (4.5), p-dimethylaminobenzoate (>4.5), D- and L-tryptophanate (1.6, 2.2), phenoxyacetate (2.1), and acetate (2.3). With the anionic receptor, nonzero binding constants were only measurable for p-nitrobenzoate (approximately 0.4), p-aminobenzoate (2.0), and p-dimethylaminobenzoate (1.8). By reference to the X-ray determined structures of related, but water-insoluble inclusion complexes, anion retention is thought to occur within a hydrophobic cavity, with four convergent hydroxy groups at its base, which develops in (L1)4+ and (L2)4- through the juxtapositioning of aromatic rings that occurs as a consequence of octadentate coordination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic060793b | DOI Listing |
J Am Chem Soc
January 2025
Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA. Electronic address:
This study investigated the regenerability of anion exchange resins for per- and polyfluoroalkyl substances (PFAS), focusing on the interaction between regenerant composition and resin characteristics. The influence of salt type and concentration on PFAS solubility revealed a general decline in perfluorohexane sulfonate (PFHxS) solubility with increased salt concentrations, most strongly with KCl followed by NaCl and NHCl. Mixed solubility results were observed for perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole-dipole interactions provides well-defined assemblies within a broad size range (10 nm-1 μm) with various shapes.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand.
: Pinocembrin is a promising drug candidate for treating ischemic stroke. The interaction of pinocembrin with drug transporters and drug-metabolizing enzymes is not fully revealed. The present study aims to evaluate the interaction potential of pinocembrin with cytochrome P450 (CYP450: CYP2B6, CYP2C9, and CYP2C19) and drug transporters including organic anion transporters (OAT1 and OAT3), organic cation transporters (OCT1 and OCT2), multidrug and toxin extrusion (MATE1 and MATE2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!