Sports-related injuries to the spine, although relatively rare compared with head injuries, contribute to significant morbidity and mortality in children. The reported incidence of traumatic cervical spine injury in pediatric athletes varies, and most studies are limited because of the low prevalence of injury. The anatomical and biomechanical differences between the immature spine of pediatric patients and the mature spine of adults that make pediatric patients more susceptible to injury include a greater mobility of the spine due to ligamentous laxity, shallow angulations of facet joints, immature development of neck musculature, and incomplete ossification of the vertebrae. As a result of these differences, 60 to 80% of all pediatric vertebral injuries occur in the cervical region. Understanding pediatric injury biomechanics in the cervical spine is important to the neurosurgeon, because coaches, parents, and athletes who place themselves in positions known to be associated with spinal cord injury (SCI) run a higher risk of such injury and paralysis. The mechanisms of SCI can be broadly subclassified into five types: axial loading, dislocation, lateral bending, rotation, and hyperflexion/hyperextension, although severe injuries often result from a combination of more than one of these subtypes. The aim of this review was to detail the characteristics and management of pediatric cervical spine injury.

Download full-text PDF

Source
http://dx.doi.org/10.3171/foc.2006.21.4.7DOI Listing

Publication Analysis

Top Keywords

cervical spine
16
pediatric athletes
8
spine injury
8
pediatric patients
8
pediatric
7
spine
7
injury
7
cervical
5
injuries
5
spine injuries
4

Similar Publications

Objective: To investigate the effects of modified twin-block appliances (MTBA) on obstructive sleep apnea (OSA) and mandibular retrognathia and the changes in the upper airway, hyoid bone position, and hypoxia-related inflammatory marker levels in children with OSA.

Methods: This study included children with OSA and mandibular retrognathia and those with class I without mandibular retrognathia (n = 35 each). The experimental group comprised children with OSA and mandibular retrognathia managed using MTBA.

View Article and Find Full Text PDF

It is important to be aware of the indications, surgical procedure selection, and associated complications. This chapter focuses on basic screw placement techniques, emphasizing on safety with each anchor placement. Familiarity with managing surgical accidents is also important.

View Article and Find Full Text PDF

Posterior cervical decompression surgery is safe and effective. It was developed to safely and reliably decompress nerve tissues. Maximising the reconstruction and maintenance of the posterior neck tissue has been reported and developed.

View Article and Find Full Text PDF

In Japan, cervical artificial disc replacement was approved by the Pharmaceuticals and Medical Devices Agency in December 2017, and two products, Mobi-C by Zimmer Biomet and Prestige LP by Medtronic, are on the market. Cervical artificial disc replacement preserves cervical motion; however, the device must be place carefully on the midline to take full advantage of its features. In addition, a reliable foraminotomy is required to cure or prevent radiculopathy due to residual foraminal stenosis.

View Article and Find Full Text PDF

Anterior cervical fixation is an excellent surgical technique for the removal of anterior compressive elements affecting the spinal cord and nerve roots while addressing cervical instability. However, it is important to recognize the unique challenges posed by the proximity of critical structures, including the trachea, esophagus, carotid sheath, and recurrent laryngeal nerve. Access to the upper cervical spine is often limited to the mandible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!