Formation potential of five haloacetic acids (HAA5FP) of a filtered surface water was studied after ozonation alone and catalytic ozonation with a ferric hydroxide (FeOOH). Factors studied were oxidation time, bromide, pH, bicarbonate alkalinity, and ozone dosages. The haloacetic acids detected were dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and dibromoacetic acid (DBAA) when bromide existed. The catalytic ozonation caused a reduction of HAA5FP of the non-bromide containing water for 9.5% - 18.3% compared to that of ozonation in 5-20 minutes. Incremental addition of bromide led to a much lower HAA5FP after catalytic ozonation than that after ozonation. HAA5FP of the water at neutral pH was higher than that at acidic and basic conditions. Catalytic ozonation showed a most advantageous potential in controlling HAA5FP over ozonation at neutral pH. The HAA5FP decreased as bicarbonate concentration increased, and the disparity between ozonation and catalytic ozonation was also reduced. The HAA5FP after catalytic ozonation was 11.2% to 28.0% lower than that after ozonation while the ratio of O3/TOC ranging from 0.45 to 1.43. The effect of catalytic ozonation on HAA5FP of the water is closely related to its enhanced generation of hydroxyl radicals in catalytic process.
Download full-text PDF |
Source |
---|
Langmuir
January 2025
CSSC Nanjing Lvzhou Environmental Protection Co., Ltd, Nanjing 210039, China.
In this study, the MnFeO@CoS magnetic nanocomposite was prepared by a two-step hydrothermal method and used to catalyze the ozone oxidation degradation of methylene blue. It was characterized by XRD, EDS, SEM, FT-IR, and XPS. The results showed that the introduction of CoS made MnFeO grow uniformly on CoS nanosheets, which effectively prevented the agglomeration of MnFeO.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur Col. Centro, Cd. Obregón C.P. 85000, Sonora, Mexico.
Technical and economic criteria were used to evaluate the feasibility of the treatment of an industrial effluent (10 m/h) for water recovery and reuse. The treatment evaluation included the following: (1) effluent characteristic determination; (2) selection and evaluation of the effluent treatment at lab scale, establishing operating conditions and process efficiency; (3) scaling up the treatment process to the industrial level; (4) treatment plant design and commercial availability analysis of the required equipment; and (5) the costs of the inversion and operation of the plant treatment, cost/m for water recovery, and time of investment recovery. The physicochemical characteristics of the effluent exposed the polluted wastewater with sodium chloride salts and colourants, predominating a mixture of tartrazine, Red 40, and brilliant blue from the synthesis of food additives.
View Article and Find Full Text PDFRSC Adv
January 2025
Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University Lianyungang 222005 China
A Ti-MCM-41 mesoporous molecular sieve catalyst was prepared by a hydrothermal method. Nitrogen adsorption desorption, XRD, TEM and SEM characterization results showed that the catalyst had a large specific surface area, a regular hexagonal pore structure, and titanium doping was uniformly dispersed in MCM-41 molecular sieves. The amount of titanium doping, reaction temperature, and the initial solution pH had important effects on the catalytic ozonation of dimethyl phthalate (DMP) by Ti-MCM-41.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Bio-Microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran.
Water pollution, driven by a variety of enduring contaminants, poses considerable threats to ecosystems, human health, and biodiversity, highlighting the urgent need for innovative and sustainable treatment approaches. Ozone-based advanced oxidation processes (AOPs) have demonstrated significant efficacy in breaking down stubborn pollutants, such as organic micropollutants and pathogens, that are not easily addressed by traditional treatment techniques. This review offers an in-depth analysis of ozonation mechanisms, covering both the direct oxidation by ozone and the indirect reactions facilitated by hydroxyl radicals, emphasizing their effectiveness and adaptability across various wastewater matrices.
View Article and Find Full Text PDFChemosphere
January 2025
Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal, Québec, H3C 1K3, Canada. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!