Upon increasing the concentration of ethylene glycol (EG) at 37 degrees C, the twist energy parameter, E(T), which governs the supercoiling free energy, was recently found to undergo a decreasing (or reverse) sigmoidal transition with a midpoint near 20 w/v % EG. In this study, the effects of adding 20 w/v % EG on the torsion elastic constant (alpha) of linear p30delta DNA and on the hydrodynamic radius (R(H)) of a synthetic 24 bp duplex DNA were examined at both 40 and 20 degrees C. The time-resolved fluorescence intensity and fluorescence polarization anisotropy (FPA) of intercalated ethidium were measured in order to assess the effects of 20 w/v % EG on: (1) alpha; (2) R(H); (3) the lifetimes of intercalated and non-intercalated dye; (4) the amplitude of dye wobble in its binding site; and (5) the binding constant for intercalation. The effects of 20 w/v % EG on the circular dichroism (CD) spectrum of the DNA and on the emission spectrum of the free dye were also measured. At 40 degrees C, addition of 20 w/v % EG caused a substantial (1.27- to 1.35-fold) increase in alpha, a significant change in the CD spectrum, and a very small, marginally significant increase in R(H), but little or no change in the amplitude of dye wobble in its binding site or the lifetime of intercalated dye. Together with previously reported measurements of E(T), these results imply that the bending elastic constant of DNA is significantly decreased by 20 w/v % EG at 40 degrees C. At 20 degrees C, addition of 20 w/v % EG caused a marginally significant decrease in alpha and very little change in any other measured properties. Also at 20 degrees C, addition of 30 w/v % betaine caused a marginally significant increase in alpha and significant but modest change in the CD spectrum, but very little change in any other properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.20634DOI Listing

Publication Analysis

Top Keywords

elastic constant
12
degrees addition
12
addition w/v
12
ethylene glycol
8
torsion elastic
8
hydrodynamic radius
8
p30delta dna
8
w/v
8
effects w/v
8
amplitude dye
8

Similar Publications

Surface induced crystallization/amorphization of phase change materials.

Nanotechnology

January 2025

MME, Wright State University, 3640 Colonel Glenn Hwy, Lake Campus, 7600 Lake Drive, Lake Campus, Fairborn, Ohio, 45435, UNITED STATES.

Surface induced crystallization/amorphization of a Germanium-antimony-tellurium (GST) nanolayer is investigated using the phase field model. A Ginzburg-Landau (GL) equation introduces an external surface layer (ESL) within which the surface energy and elastic properties are properly distributed. Next, the coupled GL and elasticity equations for the crystallization/amorphization are solved.

View Article and Find Full Text PDF

The exploration of perovskite compounds incorporating actinide and divalent elements reveals remarkable characteristics. Focusing on PbBkO, RaBkO, and SrBkO, these materials were studied using density functional theory (DFT) via the CASTEP code to analyze their electronic, optical, and mechanical properties. The results show semiconductor behavior, with respective band gaps of 1.

View Article and Find Full Text PDF

In thermosetting epoxies, thermomechanical properties can be enhanced by conscious selection of curing agents. Full cross-linking leads to a maximum in the glass- transition temperature. However, the relation between the glass transition temperature and the epoxy matrix depends on several factors beyond the cross-linking degree, such as the molecular weight of the polymers, network organization, amount of branching, and the presence of hydrogen bonds.

View Article and Find Full Text PDF

The varied material and the inherent complex microstructure make predicting the effective stiffness of fused deposition modeling (FDM) printed polylactic acid (PLA)/carbon fiber (CF) composite a troublesome problem. This article proposes a microstructure scanning electron microscope (SEM) mapping modeling and numerical mean procedure to calculate the effective stiffness of FDM printing PLA/CF laminates. The printed PLA/CF parts were modeled as a continuum of 3D uniform linear elasticity with orthotropic anisotropy, and their elastic behavior was characterized by orthotropic constitutive relations.

View Article and Find Full Text PDF

The heart is a dynamic pump whose function is influenced by its mechanical properties. The viscoelastic properties of the heart, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!