Voltage-sensitive ion channels and cancer.

Cancer Metastasis Rev

Laboratory for Cancer Ontogeny and Therapeutics, University of Delaware, Newark, DE 19716, USA.

Published: September 2006

Plasma membrane voltage-sensitive ion channels classically have been associated with a variety of inherited diseases or "channelopathies" that range in the severity of symptoms from mild to lethal. Ion channels are found throughout the body and are responsible for facilitated diffusion of ions down the electrochemical gradient across cells membranes in various tissues. Voltage-sensitive ion channels open in response to changes in the membrane potential and are primarily found in excitable cells and tissues. Potassium, calcium, and sodium channels play critical roles in the development of major diseases, such as hyperkalemia, epilepsy, congenital myotonia and several cardiac arrythmias. Recently, cancer studies have begun to define the role of voltage-sensitive ion channels in the progression of cancer to a more malignant phenotype. In cancer, the increased expression or increased kinetics of voltage-sensitive ion channels is associated with an increasing malignant potential as evinced by their role in cell proliferation, migration and survival; as such, these channels are becoming the targets of significant drug development efforts to block or reduce voltage-sensitive ion channel activity in order to prevent or combat malignant disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10555-006-9017-zDOI Listing

Publication Analysis

Top Keywords

voltage-sensitive ion
24
ion channels
24
channels
8
voltage-sensitive
6
ion
6
cancer
4
channels cancer
4
cancer plasma
4
plasma membrane
4
membrane voltage-sensitive
4

Similar Publications

Article Synopsis
  • Directed collective cell migration is crucial for morphogenesis, and various physical cues, such as electric fields, influence this process in living organisms.
  • Research on Xenopus laevis shows that electric fields promote the directed migration of embryonic stem cells in vivo, specifically in the cephalic neural crest.
  • The study identifies voltage-sensitive phosphatase 1 as essential for translating these electric fields into directional movement, suggesting that tissue morphogenesis is affected by mechanical properties generated by ectoderm movements.
View Article and Find Full Text PDF

A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.

View Article and Find Full Text PDF

A 30-Min Exposure on Permethrin and Deltamethrin Modifies Ion Transport Pathways in the Skin.

Biomolecules

November 2024

Laboratory of Electrophysiology of Epithelial Tissue and Skin, Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, M. Skłodowskiej-Curie 9, 85-094 Bydgoszcz, Poland.

Pyrethroids are pesticides used in agriculture, the textile industry, wood processing, and human and animal medicine. Pyrethroids inhibit voltage-sensitive sodium channels (VSSCs) in insects and mammals. It results in the premature opening and/or delayed closing of the channels, causing a prolonged influx of Na ions into the cell.

View Article and Find Full Text PDF

Structural dynamics of a designed peptide pore under an external electric field.

Biophys Chem

December 2024

Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Computational Biophysics Research Group, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Membrane potential is essential in biological signaling and homeostasis maintained by voltage-sensitive membrane proteins. Molecular dynamics (MD) simulations incorporating membrane potentials have been extensively used to study the structures and functions of ion channels and protein pores. They can also be beneficial in designing and characterizing artificial ion channels and pores, which will guide further amino acid sequence optimization through comparison between the predicted models and experimental data.

View Article and Find Full Text PDF

Proteoglycans in Mechanobiology of Tissues and Organs: Normal Functions and Mechanopathology.

Proteoglycan Res

May 2024

Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, 97201.

Proteoglycans (PGs) are a diverse class of glycoconjugates that serve critical functions in normal mechanobiology and mechanopathology. Both the protein cores and attached glycosaminoglycan (GAG) chains function in mechanically-sensitive processes, and loss of either can contribute to development of pathological conditions. PGs function as key components of the extracellular matrix (ECM) where they can serve as mechanosensors in mechanosensitive tissues including bone, cartilage, tendon, blood vessels and soft organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!