Plant cell walls are essential for proper growth, development, and interaction with the environment. It is generally accepted that land plants arose from aquatic ancestors which are sister groups to the charophycean algae (i.e., Streptophyta), and study of wall evolution during this transition promises insight into structure-function relationships of wall components. In this paper, we explore wall evolutionary history by studying the incorporation of pectin polymers into cell walls of the model organism Penium margaritaceum, a simple single-cell desmid. This organism produces only a primary wall consisting of three fibrillar or fibrous layers, with the outermost stratum terminating in distinct, calcified projections. Extraction of isolated cell walls with trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid yielded a homogalacturonan (HGA) that was partially methyl esterified and equivalent to that found in land plants. Other pectins common to land plants were not detected, although selected components of some of these polymers were present. Labeling with specific monoclonal antibodies raised against higher-plant HGA epitopes (e.g., JIM5, JIM7, LM7, 2F4, and PAM1) demonstrated that the wall complex and outer layer projections were composed of the HGA which was significantly calcium complexed. JIM5 and JIM7 labeling suggested that highly methyl esterified HGA was secreted into the isthmus zone of dividing cells, the site of active wall secretion. As the HGA was displaced to more polar regions, de-esterification in a non-blockwise fashion occurred. This, in turn, allowed for calcium binding and the formation of the rigid outer wall layer. The patterning of HGA deposition provides interesting insights into the complex process of pectin involvement in the development of the plant cell wall.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00709-006-0197-8 | DOI Listing |
Plant Cell Rep
January 2025
Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China.
A high-throughput sequencing identified 1283 lncRNAs in anthers at different stages in Arabidopsis and their relationship with protein-coding genes and miRNAs during anther and pollen development were analyzed. Long non-coding RNAs (lncRNAs) are important regulatory molecules involved in various biological processes. However, their roles in male reproductive development and interactions with miRNAs remained elusive.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.
Some key secondary metabolism genes are important for driving the infection process of entomopathogenic fungi; however, their chemical substance basis has not been well investigated. Here, mixtures of polyol lipids are discovered, which are synthesized through iterative chain transfer-esterification-hydrolysis cycles catalyzed by serine hydrolase during the release of online highly reducing polyketide intermediates. Importantly, an gene knockout experiment revealed that the synthesis of polyol lipids is necessary for rodlet layer formation on the cell wall of .
View Article and Find Full Text PDFLung Cancer Manag
July 2024
Department of Radiation Oncology, University of Manitoba, Winnipeg, MB, Canada.
Single-fraction stereotactic body radiation therapy (SF-SBRT) for peripheral lung tumors was reviewed. Medically inoperable peripheral lung tumors eligible for SF-SBRT 34 Gray were treated. Patient characteristics, treatment and toxicity parameters were retrospectively collected, and toxicities were evaluated.
View Article and Find Full Text PDFTree Physiol
January 2025
Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China.
Root-associated endophytic fungi can create symbiotic relationships with trees to enhance stress tolerance, but the underlying mechanisms, especially with regard to waterlogging tolerance, remain unclear. This study aimed to elucidate the effects of Funneliformis mosseae and Serendipita indica on the growth, root cross-section structure, and root transcriptional responses of peach under waterlogging stress, with a focus on polyamine and proline metabolism. Genes and transcription factors associated with secondary cell wall biosynthesis were selected, and their expression profiles were analyzed.
View Article and Find Full Text PDFLangmuir
January 2025
Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science (IISc), Bangalore 560012, India.
The enduring pathogenicity of can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!