Two chromate-resistant filamentous fungi, strains H13 and Ed8, were selected from seven independent fungal isolates indigenous to Cr(VI)-contaminated soil because of their ability to decrease hexavalent chromium levels in the growth medium. Morphophysiological studies identified strain H13 as a Penicillium sp. isolate and Ed8 as an Aspergillus sp. isolate. When incubated in minimal medium with glucose as a carbon source and in the presence of 50 microg/mL Cr(VI), these strains caused complete disappearance of Cr(VI) in the growth medium after about 72 h of incubation. Total chromium concentration in growth medium was constant during culture growth, and no accumulation of chromium in fungal biomass was observed. Quantitative determinations of oxidized and reduced chromium species during the reduction process revealed stoichiometric conversion of Cr(VI) to Cr(III). A decrease in Cr(VI) levels from industrial wastes was also induced by Ed8 or H13 biomass. These results indicate that chromate-resistant filamentous fungi with Cr(VI)-reducing capability could be useful for the removal of Cr(VI) contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/w06-037 | DOI Listing |
Mol Plant Microbe Interact
January 2025
University of Cologne, Institute for Plant Sciences, Cologne, Germany.
Pathogens manipulate host physiology through the secretion of virulence factors (effectors) to invade and proliferate on the host. The molecular functions of effectors inside plant hosts have been of interest in the field of molecular plant-microbe interactions. Obligate biotrophic pathogens, such as rusts and powdery mildews, cannot proliferate outside of plant hosts.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
A medicinal plant is any plant that in one or more of its organs contains substances that can be used by it or their constituent for therapeutic purposes. The present work was done to evaluate pharmacognostic, fluorescence, proximate and phytochemical analysis of ethanolic extracts of Cistanche tubulosa (Orobanchaceae) along with antimicrobial activity. Antimicrobial activity against four bacterial strains S.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, Tianjin, China.
A Chinese isolate of the fungus Penicillium chrysogenum was analyzed using liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry combined with Global Natural Products Social Networking (GNPS) on culture condition leading to the rapid identification of 20 secondary metabolites. Among them are eight polyketones, two phthalides, six diketopiperazine alkaloids, and others. A meleagrine network was examined and proposed as a promising candidate for new natural products.
View Article and Find Full Text PDFBackground: Snow mold caused by different psychrophilic phytopathogenic fungi is a devastating disease of winter cereals. The variability of the snow mold pathocomplex (the quantitative composition of snow mold fungi) has not been evaluated across different crops or different agrocenoses, and no microbial taxa have been predicted at the whole-microbiome level as potential effective snow mold control agents. Our study aimed to assess the variability of the snow mold pathocomplex in different winter cereal crops (rye, wheat, and triticale) in different agrocenoses following the peak disease progression and to arrange a hierarchical list of microbial taxa predicted to be the main candidates to prevent or, conversely, stimulate the development of snow mold pathogens.
View Article and Find Full Text PDFMicrobiome
January 2025
Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.
Background: The main application of cork is the production of stoppers for wine bottles. Cork sometimes contains 2,4,6-trichloroanisole, a compound that, at a concentration of ng/L, produces an unpleasant musty odor that destroys the organoleptic properties of wine and results in enormous economic losses for wineries and cork industries. Cork can exhibit a defect known as yellow stain, which is associated with high levels of 2,4,6-trichloroanisole.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!