Background: Melting temperature analysis of products amplified with SYBR I Green chemistry is a cheap and effective method for identification of sequence differences. When used in conventional quantitative real-time PCR instruments (qPCR), this method is limited by temperature variations over the heating block and low numbers of fluorescence measurements during the dissociation step, which hamper the ability of most instruments to report accurate and precise melting temperatures.

Methods: We designed a molecular beacon-based temperature indicator probe (Tm-probe) to control for variations in temperatures over the heating block of the instrument. In addition, we wrote an automated curve-fit analysis algorithm of dissociation data to use multiple data points with a gaussian curve fit to extrapolate precise melting temperatures.

Results: Use of the Tm-probe in conjunction with the analysis algorithm and multiple dissociations improved SDs of melting temperatures over a 96-well plate from 0.19 to 0.06 degrees C.

Conclusions: Melting temperature analyses with SYBR I Green chemistry on conventional qPCR instruments can be improved by the use of a Tm-probe in conjunction with curve-fit analysis of data. Resolution improvement up to 3-fold is possible and allows additional melting temperatures to be identified.

Download full-text PDF

Source
http://dx.doi.org/10.1373/clinchem.2006.075184DOI Listing

Publication Analysis

Top Keywords

melting temperature
12
sybr green
12
green chemistry
12
molecular beacon-based
8
beacon-based temperature
8
temperature analysis
8
heating block
8
precise melting
8
curve-fit analysis
8
analysis algorithm
8

Similar Publications

Freezing extends the shelf life of foods but often leads to structural damage due to ice crystal formation, negatively impacting quality attributes. Oscillating magnetic field (OMF)-assisted supercooling has emerged as a potential technique to overcome these limitations by inhibiting ice nucleation and maintaining foods in a supercooled state. Despite its potential, the effectiveness and underlying mechanisms of OMF-assisted supercooling remain subjects of debate.

View Article and Find Full Text PDF

Thiamin, an essential micronutrient, is a cofactor for enzymes involved in the central carbon metabolism and amino acids pathways. Despite efforts to enhance thiamin content in rice by incorporating thiamin biosynthetic genes, increasing thiamin content in endosperm remains challenging, possibly due to a lack of thiamin stability and/or a local sink. The introduction of storage proteins has been successful in biofortification strategies and similar efforts targeting thiamin led to a 3-4-fold increase in white rice.

View Article and Find Full Text PDF

Poly(lactic-co-glycolic acid) (PLGA) has been widely employed for various biomedical applications owing to its biodegradability and biocompatibility. The discovery of the stereocomplex formation between enantiomeric alternating PLGA pairs underscored its potential as high-performance biodegradable materials with diverse material properties and biodegradability. Herein, we have established a regio- and stereoselective ring-opening polymerization approach for the synthesis of stereocomplexed isoenriched alternating PLGA from racemic methyl-glycolide (rac-MG).

View Article and Find Full Text PDF

The synthesis of novel highly phosphorescent N^C^N tridentate platinum(II)-complex-peptide nucleic acid (PNA) bioconjugates was accomplished through the solid-phase approach. Melting temperature measurements and circular dichroism spectroscopy studies demonstrated that these conjugates maintain the PNA ability to recognize complementary ssDNA and ssRNA, though the length of the spacer between the metal center and the PNA sequence affects their hybridization properties. Noteworthy, the conjugation of PNA to this family of Pt(II) complexes significantly enhanced the luminescent features of the organometallic moiety, leading to increased quantum yields (82.

View Article and Find Full Text PDF

Anti-freezing conductive hydrogels with exceptional mechanical properties and stable sensing performance at -30 °C.

Mater Horiz

January 2025

Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China.

Conductive hydrogels with stable sensing performance are highly required in soft electronic devices. However, these hydrogels tend to solidify and experience structural damage at sub-zero temperatures, leading to material breakdown and device malfunction. The main challenge lies in effectively designing the micro/nano-structure to enhance mechanical properties and stable strain sensing while preventing freezing in hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!