Phosphoinositide 3-kinase C2alpha links clathrin to microtubule-dependent movement.

J Biol Chem

Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.

Published: January 2007

AI Article Synopsis

  • PI3K-C2alpha is a type II PI-3-kinase involved in membrane transport and signaling, inhibiting clathrin-mediated trafficking and leading to new clathrin-coated structures.
  • Using fluorescent tags, researchers observed that these structures, containing both PI3K-C2alpha and clathrin, move rapidly along microtubules (5-20 microm/s) and their movement is affected by cytoplasmic acidification.
  • Dynactin plays a crucial role in this movement, as disruptions in its function prevent motion, indicating a key connection between PI3K-C2alpha and the microtubule motor system that influences membrane trafficking in cells.

Article Abstract

Phosphoinositide 3-kinase C2alpha (PI3K-C2alpha) is a type II PI-3-kinase that has been implicated in several important membrane transport and signaling processes. We previously found that overexpression of PI3K-C2alpha inhibits clathrin-mediated membrane trafficking and induces proliferation of novel clathrin-coated structures within the cytoplasm. Using fluorescently tagged fusions of PI3K-C2alpha and clathrin, we explored the behavior of these structures in intact cells. Both proteins are present in the structures, and using rapid image acquisition and fluorescence photoactivation probes, we find that they exhibit localized, rapid mobility (5-20 microm/s). The movement is micro-tubule-based as revealed by use of inhibitors, and PI3K-C2alpha accumulates on microtubules rapidly and reversibly following cytoplasmic acidification, which also blocks movement. Dynactin mediates the movement of these clathrin-PI3K-C2alpha structures, since disruption of dynactin function by overexpression of its p50 subunit also inhibits movement. Finally, immunoprecipitation experiments reveal an interaction between endogenous PI3K-C2alpha and dynactin subunits. Together, these results reveal a molecular linkage between PI3K-C2alpha and the microtubule motor machinery, with implications for membrane trafficking in intact cells.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M606998200DOI Listing

Publication Analysis

Top Keywords

phosphoinositide 3-kinase
8
3-kinase c2alpha
8
membrane trafficking
8
intact cells
8
pi3k-c2alpha
6
movement
5
c2alpha links
4
links clathrin
4
clathrin microtubule-dependent
4
microtubule-dependent movement
4

Similar Publications

[Advances in the study of viruses inhibiting the production of advanced autophagy or interferon through Rubicon to achieve innate immune escape].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China. *Corresponding authors, E-mail:

The innate immune response is the first line of defense for the host against viral infections. Targeted degradation of pathogenic microorganisms through autophagy, in conjunction with pattern recognition receptors synergistically inducing the production of interferon (IFN), constitutes an important pathway for the body to resist viral infections. Rubicon, a Run domain Beclin 1-interacting and cysteine-rich domain protein, has an inhibitory effect on autophagy and IFN production.

View Article and Find Full Text PDF

Objective To investigate the effect of basic helix-loop-helix family member E40 (BHLHE40) on the invasion and migration of osteosarcoma (OS) cells, and to explore the role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway in the biological behavior of OS mediated by BHLHE40, providing a scientific basis for targeted therapy of OS. Methods On the basis of clinical OS samples and OS cell lines, the expression differences of BHLHE40 between OS and adjacent tissues, as well as those between OS cells and normal osteoblast cell lines, were analyzed. BHLHE40 knockdown OS cells were obtained through shRNA transfection.

View Article and Find Full Text PDF

Objective To investigate the effects and molecular mechanism of Homer protein homolog 1a (Homer 1a) overexpression on nerve injury in mice with traumatic brain injury (TBI). Methods Sixty male C57BL/6 mice were randomly divided into five groups: sham group, TBI group, empty lentivirus (Lv-NC) group, Homer 1a overexpression lentivirus (Lv-Homer 1a) group and Lv-Homer 1a + 740 Y-P group, with 12 mice in each group. The lentivirus was orthotopic injected into the cerebral cortex of mice 5 d before modeling, while 740 Y-P was injected intraperitoneally 1 d before modeling.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe inflammatory condition of the respiratory system, associated with high morbidity and mortality. This study investigates the therapeutic potential of tocilizumab (TZ), an IL-6 receptor inhibitor, in mitigating lipopolysaccharide (LPS)-induced ALI by modulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. An ALI model was established using LPS induction.

View Article and Find Full Text PDF

The dysregulation of phosphatidylinositol 3-kinase (PI3K) signaling plays a pivotal role in driving neoplastic transformation by promoting uncontrolled cell survival and proliferation. This oncogenic activity is primarily caused by mutations that are frequently found in PI3K genes and constitutively activate the PI3K signaling pathway. However, tumorigenesis can also arise from nonmutated PI3K proteins adopting unique active conformations, further complicating the understanding of PI3K-driven cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!