The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering.

Cell

Center for Biomolecular Recognition and Division of Molecular and Life Sciences, Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea.

Published: November 2006

Transport protein particle (TRAPP) I is a multisubunit vesicle tethering factor composed of seven subunits involved in ER-to-Golgi trafficking. The functional mechanism of the complex and how the subunits interact to form a functional unit are unknown. Here, we have used a multidisciplinary approach that includes X-ray crystallography, electron microscopy, biochemistry, and yeast genetics to elucidate the architecture of TRAPP I. The complex is organized through lateral juxtaposition of the subunits into a flat and elongated particle. We have also localized the site of guanine nucleotide exchange activity to a highly conserved surface encompassing several subunits. We propose that TRAPP I attaches to Golgi membranes with its large flat surface containing many highly conserved residues and forms a platform for protein-protein interactions. This study provides the most comprehensive view of a multisubunit vesicle tethering complex to date, based on which a model for the function of this complex, involving Rab1-GTP and long, coiled-coil tethers, is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2006.09.029DOI Listing

Publication Analysis

Top Keywords

vesicle tethering
12
trapp complex
8
multisubunit vesicle
8
highly conserved
8
complex
5
architecture multisubunit
4
trapp
4
multisubunit trapp
4
complex suggests
4
suggests model
4

Similar Publications

In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions.

View Article and Find Full Text PDF

The potential role of vesicle transport-related small GTPases rabs in abiotic stress responses.

Plant Physiol Biochem

December 2024

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China. Electronic address:

Rab GTPases are a class of small GTP-binding proteins, play crucial roles in the membrane transport machinery with in eukaryotic cells. They dynamically regulate the precise targeting and tethering of transport vesicles to specific compartments by transitioning between active and inactive states. In plants, Rab GTPases are classified into eight distinct subfamilies: Rab1/D, Rab2/B, Rab5/F, Rab6/H, Rab7/G, Rab8/E, Rab11/A, and Rab18/C.

View Article and Find Full Text PDF

Adaptor protein complex-3 (AP-3) mediates cargo sorting from endosomes to lysosomes and lysosome-related organelles. Recently, it was shown that AP-3 adopts a constitutively open conformation compared to the related AP-1 and AP-2 coat complexes, which are inactive until undergoing large conformational changes upon membrane recruitment. How AP-3 is regulated is therefore an open question.

View Article and Find Full Text PDF

Many gram-negative pathogenic bacteria use type III effector proteins (T3Es) as essential virulence factors to suppress host immunity and to cause disease. However, in many cases the molecular function of T3Es remains unknown. The plant pathogen Xanthomonas campestris pv.

View Article and Find Full Text PDF

RudLOV is an optically synchronized cargo transport method revealing unexpected effects of dynasore.

EMBO Rep

December 2024

Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan.

Live imaging of secretory cargoes is a powerful method for understanding the mechanisms of membrane trafficking. Inducing the synchronous release of cargoes from an organelle is key for enhancing microscopic observation. We developed an optical cargo-releasing method, 'retention using dark state of LOV2' (RudLOV), which enables precise spatial, temporal, and quantity control during cargo release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!