The amount of p53 protein in a cell is normally limited by ubiquitin-dependent degradation. In this issue of Cell, Le Cam et al. (2006) reveal that p53 ubiquitination contributes to transcriptional activation rather than protein stability. These results may provide insight into how p53 can modulate diverse cellular processes such as growth arrest and apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2006.11.003DOI Listing

Publication Analysis

Top Keywords

p53 ubiquitination
8
function p53
4
ubiquitination amount
4
amount p53
4
p53 protein
4
protein cell
4
cell limited
4
limited ubiquitin-dependent
4
ubiquitin-dependent degradation
4
degradation issue
4

Similar Publications

eIF4A1 exacerbates myocardial ischemia-reperfusion injury in mice by promoting nuclear translocation of transgelin/p53.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China.

Eukaryotic translation initiation factor 4A1 (eIF4A1) is an ATP-dependent RNA helicase that participates in a variety of biological and pathological processes such as cell proliferation and apoptosis, and cancer. In this study we investigated the role of eIF4A1 in ischemic heart disease. The myocardial ischemia/reperfusion (I/R) model was established in mice by ligation of the left anterior descending artery for 45 min with the subsequent reperfusion for 24 h; cultured neonatal mouse ventricular cardiomyocytes (NMVCs) treated with HO (200 μM) or H/R (12 h hypoxia and 12 h reoxygenation) were used for in vitro study.

View Article and Find Full Text PDF

Chemoresistance is a major obstacle in the treatment of gastric cancer (GC). Notably, aberrant expression of microRNAs (miRs) is closely related to tumor development and progression. In the present study, the role of miR-424-5p in the chemoresistance of GC was investigated.

View Article and Find Full Text PDF

The spatial role of M1 and M2 tumor-associated macrophages (M1/M2 TAMs) in precision medicine remains unclear. EGFR and TP53 are among the most frequently mutated genes in lung adenocarcinoma. We characterized the mutation status and density of M1/M2 TAMs within tumor islets and stroma in 117 lung adenocarcinomas using next-generation sequencing and immunohistochemistry, respectively.

View Article and Find Full Text PDF

To better understand drug resistance mechanisms to CDK4/6 inhibitors and inform precision medicine, we analyze real-world multi-omics data from 400 HR+/HER2- metastatic breast cancer patients treated with CDK4/6 inhibitors plus endocrine therapies, including 200 pre-treatment and 227 post-progression samples. The prevalences of ESR1 and RB1 alterations significantly increase in post-progression samples. Integrative clustering analysis identifies three subgroups harboring different resistance mechanisms: ER driven, ER co-driven and ER independent.

View Article and Find Full Text PDF

Ribosomal protein L6 suppresses hepatocellular carcinoma by modulating FBXO22-mediated p53 degradation.

Cell Signal

January 2025

Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, PR China. Electronic address:

The ribosomal protein L6 (RPL6) is significant in the progression of different cancer types. However, its precise role in hepatocellular carcinoma (HCC) remains unclear. This research demonstrated that the expression levels of RPL6 are notably decreased in HCC tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!