The addition of a lipid moiety to a protein increases its hydrophobicity and subsequently its attraction to lipophilic environments like membranes. Indeed most lipid-modified proteins are localized to membranes where they associate with multiprotein signaling complexes. Acylation and prenylation are the two common categories of lipidation. The enzymology and pharmacology of prenylation are well understood but relatively very little is known about palmitoylation, the most common form of acylation. One distinguishing characteristic of palmitoylation is that it is a dynamic modification. To understand more about how palmitoylation is regulated, we fused palmitoylation substrates to fluorescent proteins and reported their subcellular distribution and trafficking. We used automated high-throughput fluorescence microscopy and a specialized computer algorithm to image and measure the fraction of palmitoylation reporter on the plasma membrane versus the cytoplasm. Using this system we determined the residence half-life of palmitate on the dipalmitoyl substrate peptide from GAP43 as well as the EC(50) for 2-bromopalmitate, a common inhibitor of palmitoylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0076-6879(06)14010-0 | DOI Listing |
Virulence
December 2025
Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
Present study was conducted to evaluate the detrimental impacts of exposure of Multi-walled Carbon Nanotubes (MWCNT-NP) on enzymatic activities and tissue structures in Swiss albino mice. The experimental groups of mice received MWCNT-NP for specific time period (seven or fourteen days). Two distinct doses of the MWCNT-NP solution were given orally: 0.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Hematology, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China.
SPT5 exhibits versatile functions in RNA Pol II promoter proximal pausing, pause release, and elongation in metazoans. However, the mechanism underlying the functional switch of SPT5 during early elongation has not been fully understood. Here, we report that the phosphorylation site-rich domain (PRD)/CTR1 and the prion-like domain (PLD)/CTR2, which are situated adjacent to each other within the C-terminal repeat (CTR) in SPT5, play pivotal roles in Pol II pausing and elongation, respectively.
View Article and Find Full Text PDFPhysiol Plant
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, China.
UDP-glycosyltransferases (UGTs) are the largest glycosyltransferase family developed during the evolution of the plant kingdom. However, their physiological significance in abiotic stress adaptation in land plants is largely unknown. In this study, we identified a UGT gene from Arabidopsis thaliana, UGT86A1, that was significantly induced by salt and drought stresses.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial herbicide target in current research, playing an important role in the comprehensive management of resistant weeds. However, the limited crop selectivity and less effectiveness against grass weeds of many existing HPPD inhibitors, limit their further application. To address these issues, a series of novel HPPD inhibitors with fused ring structures were designed and synthesized by introducing an electron-rich indazolone ring and combining it with the classical triketone pharmacophore structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!