The role of delta opioid receptors in the anxiolytic actions of benzodiazepines.

Pharmacol Biochem Behav

Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Bldg 1, Columbia, SC 29208, USA.

Published: November 2006

The anxiolytic effects of benzodiazepines appear to involve opioid processes in the amygdala. In previous experiments, overexpression of enkephalin in the amygdala enhanced the anxiolytic actions of the benzodiazepine agonist diazepam in the elevated plus maze. The effects of systemically administered diazepam are also blocked by injections of naltrexone into the central nucleus of the amygdala. The current studies investigated the role of delta opioid receptors in the anxiety-related effects of diazepam. Three days following bilateral stereotaxic injections of viral vectors containing cDNA encoding proenkephalin or beta-galactosidase (control vector), the delta opioid receptor antagonist naltrindole (10 mg/kg, s.c.) attenuated the enhanced anxiolytic effects of 1-2 mg/kg diazepam in rats overexpressing preproenkephalin in the amygdala. Despite this effect, naltrindole failed to attenuate the anxiolytic action of higher diazepam doses (3 mg/kg) in animals with normal amygdalar enkephalin expression. Similarly, the mu opioid receptor antagonist, beta-funaltrexamine (20 mg/kg, s.c.), had no effect on the anxiolytic effect of diazepam alone. These data support a role for delta opioid receptors in the opioid-enhanced anxiolytic effects of diazepam.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892843PMC
http://dx.doi.org/10.1016/j.pbb.2006.09.025DOI Listing

Publication Analysis

Top Keywords

delta opioid
16
role delta
12
opioid receptors
12
anxiolytic effects
12
anxiolytic actions
8
enhanced anxiolytic
8
effects diazepam
8
opioid receptor
8
receptor antagonist
8
anxiolytic
7

Similar Publications

Substance use disorders (SUDs) are a significant public health concern, with over 30% failing available treatment. Severe SUD is characterized by drug-cue reactivity that predicts treatment-failure. We leveraged this pathophysiological feature to personalize deep brain stimulation (DBS) of the nucleus accumbens region (NAc) in an SUD patient.

View Article and Find Full Text PDF

Background And Purpose: Pituitary adenylate cyclase activating polypeptide (PACAP) is a human migraine trigger that is being targeted for migraine. The δ-opioid receptor (δ-receptor) is a novel target for the treatment of migraine, but its mechanism remains unclear. The goals of this study were to develop a mouse PACAP-headache model using clinically significant doses of PACAP; determine the effects of δ-receptor activation in this model; and investigate the co-expression of δ-receptors, PACAP and PACAP-PAC1 receptor.

View Article and Find Full Text PDF

Background: Studies examining racial and ethnic disparities in-hospital mortality for patients hospitalized with COVID-19 had mixed results. Findings from patients within academic medical centers (AMCs) are lacking, but important given the role of AMCs in improving health equity.

Objective: The purpose of this study is to assess whether minority patients hospitalized with COVID-19 in National COVID Cohort Collaborative (N3C) institutions, which consist predominantly of AMCs, have higher mortality rates relative to White patients.

View Article and Find Full Text PDF

Peripheral inflammation enhances opioid-induced gastrointestinal motility inhibition via up-regulating spinal mu opioid receptor.

Toxicol Appl Pharmacol

January 2025

Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China. Electronic address:

Opioids are potent analgesics in clinical pain management but exert variable analgesia in different pain types. Opioid-induced constipation is a common side effect of opioid therapy, and whether opioids induce different gastrointestinal motility inhibitions in different pain types is unknown. In this study, we evaluated the antinociceptive effects and inhibition of upper gastrointestinal transit and colonic bead expulsion of morphine, DAMGO, and Deltorphin in mouse CFA chronic inflammatory pain, SNI chronic neuropathic pain, and carrageenan chronic inflammatory pain models.

View Article and Find Full Text PDF

Deer mice provide a valuable naturally occurring animal model for investigating pathophysiological mechanisms underlying repetitive behaviors. Prior investigations using this model have identified abnormalities in the cortico-basal ganglia circuitry, including alterations within the indirect pathway and levels of endogenous opioids in the frontal cortex. In this study, the behaviors of n = 7 mice were quantified, and their brains were sectioned.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!