AI Article Synopsis

Article Abstract

Imatinib is an effective therapy for chronic myeloid leukemia (CML), a myeloproliferative disorder characterized by the expression of the recombinant oncoprotein Bcr-Abl. In this investigation, we studied an imatinib-resistant cell line (K562-r) generated from the K562 cell line in which none of the previously described mechanisms of resistance had been detected. A threefold increase in the expression of the heat-shock protein 70 (Hsp70) was detected in these cells. This increase was not associated to heat-shock transcription factor-1 (HSF-1) overexpression or activation. RNA silencing of Hsp70 decreased dramatically its expression (90%), and was accompanied by a 34% reduction in cell viability. Overexpression of Hsp70 in the imatinib-sensitive K562 line induced resistance to imatinib as detected by a large reduction in cell death in the presence of 1 muM of imatinib. Hsp70 level was also increased in blast cells of CML patients resistant to imatinib, whereas the level remained low in responding patients. Taken together, the results demonstrate that overexpression of Hsp70 can lead to both in vitro and in vivo resistance to imatinib in CML cells. Moreover, the overexpression of Hsp70 detected in imatinib-resistant CML patients supports this mechanism and identifies potentially a marker and a therapeutic target of CML evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.leu.2404463DOI Listing

Publication Analysis

Top Keywords

overexpression hsp70
12
heat-shock protein
8
chronic myeloid
8
myeloid leukemia
8
hsp70 detected
8
reduction cell
8
resistance imatinib
8
cml patients
8
imatinib
6
hsp70
6

Similar Publications

GRP78 as a potential therapeutic target in cancer treatment: an updated review of its role in chemoradiotherapy resistance of cancer cells.

Med Oncol

January 2025

Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410013, China.

GRP78 (Glucose-related protein 78, BiP/HSPA5) is commonly overexpressed in cancer cells. Acting as an activator of endoplasmic reticulum stress, GRP78 is involved in the resistance of cancer cells to injury. Current evidence suggests that GRP78 plays a significant role in the radiotherapy resistance and chemotherapy resistance of cancers, which is accomplished through a variety of complex pathways.

View Article and Find Full Text PDF

The heat shock protein 70 (HSP70) family plays an important role in the growth and development of lettuce and in the defense response to high-temperature stress; however, its bioinformatics analysis in lettuce has been extremely limited. Genome-wide bioinformatics analysis methods such as chromosome location, phylogenetic relationships, gene structure, collinearity analysis, and promoter analysis were performed in the gene family, and the expression patterns in response to high-temperature stress were analyzed. The mechanism of in heat resistance in lettuce was studied by virus-induced gene silencing (VIGS) and transient overexpression techniques.

View Article and Find Full Text PDF

Low shear stress induces vascular endothelial cells apoptosis via miR-330 /SOD2 /HSP70 signaling pathway.

Exp Cell Res

January 2025

School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China; Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, 250014, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China. Electronic address:

Atherosclerosis (AS) is a chronic disease initiated by vascular endothelial dysfunction, with low shear stress (SS) being a critical inducing factor in this dysfunction. Apoptosis, a form of programmed cell death, is closely associated with AS progression. However, the impact of low SS on endothelial apoptosis and its specific molecular mechanisms remains unclear.

View Article and Find Full Text PDF

Heat shock transcription factors (Hsfs) play important roles in plant developmental regulations and various abiotic stress responses. However, their evolutionary mechanism of freezing tolerance remains poorly understood. In our previous transcriptomics study based on DNA methylation sequencing, the BnaHsfA2 was found to be significantly accumulated in winter rapeseed (Brassica rapa L.

View Article and Find Full Text PDF

Background: Doxorubicin-induced cardiotoxicity is still an important medical problem associated with a high mortality rate in cancer survivors. p53 plays a key role in doxorubicin-induced cardiotoxicity. Diacylglycerol kinase ζ (Dgkζ), a 130-kDa enzyme abundant in cardiomyocytes, regulates the p53 protein expression level in neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!