Ectomesenchymal cells isolated from the first branchial arch have the potential to differentiate into a variety of cell lineages both in vitro and in vivo. This study was aimed to confirm the plasticity of multilineage differentiation with molecular and cellular characterization. Monolayer cultures of ectomesenchymal cells harvested from the first branchial arch primordia in embryonic day 9.5 BALB/c mice were passaged 3 times before analysis. Staining with antibodies against S-100, p75 and vimentin suggested that the population of stem cells originated from ectomesenchyme, with few contaminating cells stained for cytokeratin. Then, cells were transferred to adipogenic, osteogenic, chondrogenic and odontogenic media. The initiation of controlled differentiation was determined with histological assays, and the expression of tissue-specific genes was detected using immunocytochemical staining and reverse transcription polymerase chain reaction. The adipogenic ectomesenchymal cells showed accumulation of lipid vacuoles and expression of lipoprotein lipase and peroxisome proliferator-activated receptor gamma(2). Following osteoinduction, the fibroblast-like cells became cuboidal and formed mineralized nodules. In addition, the expression of mRNA encoding osteocalcin and osteopontin proved osteogenesis at the molecular level. Chondrogenic lineage expressed collagen type II, aggrecan and Sox9 with a low level of collagen type I in monolayer culture. Odontogenesis was determined by dentin sialophosphoprotein, collagen type I and dentin matrix protein 1 expression. Therefore, we have demonstrated that ectomesenchymal cells from the first branchial arch are capable of extensive multilineage differentiation in vitro, controllable by the culture environment. This makes them a relevant and valuable source of stem cells for research of craniofacial development and tissue engineering of restoration.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000095986DOI Listing

Publication Analysis

Top Keywords

ectomesenchymal cells
20
branchial arch
16
multilineage differentiation
12
collagen type
12
cells
10
cells isolated
8
isolated branchial
8
stem cells
8
characterization ectomesenchymal
4
branchial
4

Similar Publications

Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications.

Front Cell Dev Biol

January 2025

Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.

The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling.

View Article and Find Full Text PDF

Dorsal-ventral patterning of neural progenitors in the posterior neural tube, which gives rise to the spinal cord, has served as a model system to understand how extracellular signals organize developing tissues. While previous work has shown that signaling gradients diversify progenitor fates at the dorsal and ventral ends of the tissue, the basis of fate specification in intermediate regions has remained unclear. Here we use zebrafish to investigate the neural plate, which precedes neural tube formation, and show that its pre-patterning by a distinct signaling environment enables intermediate fate specification.

View Article and Find Full Text PDF

The brain and spinal cord originate from a neural tube that is preceded by a flat structure known as the neural plate during early embryogenesis. In humans, failure of the neural plate to convert into a tube by the fourth week of pregnancy leads to neural tube defects (NTDs), birth defects with serious neurological consequences. The signaling mechanisms governing the process of neural tube morphogenesis are unclear.

View Article and Find Full Text PDF

The low-affinity neurotrophic receptor CD271 plays a crucial role in the osteogenic differentiation of ectomesenchyme stem cells (EMSCs), which is essential for the development and regeneration of jaw bones. This study aimed to investigate the influence of CD271 on EMSCs osteogenic differentiation and to uncover the underlying mechanisms. CD271-deficient mice exhibited delayed mandibular bone development, with a significantly reduction in the expression of osteogenic makers such as ALP, Col-1, OPN, and RUNX2.

View Article and Find Full Text PDF

The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!