Anti-silencing function 1 (Asf1) is a highly conserved chaperone of histones H3/H4 that assembles or disassembles chromatin during transcription, replication, and repair. We have found that budding yeast lacking Asf1 has greatly reduced levels of histone H3 acetylated at lysine 9. Lysine 9 is acetylated on newly synthesized budding yeast histone H3 prior to its assembly onto newly replicated DNA. Accordingly, we found that the vast majority of H3 Lys-9 acetylation peaked in S-phase, and this S-phase peak of H3 lysine 9 acetylation was absent in yeast lacking Asf1. By contrast, deletion of ASF1 has no effect on the S-phase specific peak of H4 lysine 12 acetylation; another modification carried by newly synthesized histones prior to chromatin assembly. We show that Gcn5 is the histone acetyltransferase responsible for the S-phase-specific peak of H3 lysine 9 acetylation. Strikingly, overexpression of Asf1 leads to greatly increased levels of H3 on acetylation on lysine 56 and Gcn5-dependent acetylation on lysine 9. Analysis of a panel of Asf1 mutations that modulate the ability of Asf1 to bind to histones H3/H4 demonstrates that the histone binding activity of Asf1 is required for the acetylation of Lys-9 and Lys-56 on newly synthesized H3. These results demonstrate that Asf1 does not affect the stability of the newly synthesized histones per se, but instead histone binding by Asf1 promotes the efficient acetylation of specific residues of newly synthesized histone H3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M608025200 | DOI Listing |
Analyst
January 2025
Department of Chemical and Biological Engineering, Andong National University, Andong, Republic of Korea.
Here, we developed a novel, cost-effective fluorescence light-up biosensor for Pb detection based on a label-free G-quadruplex combined with modified thioflavin T (ThT) derivatives. Among the various G-quadruplex sequences tested, only T2 exhibited fluorescence light-up properties upon interacting with the modified ThT derivatives in the presence of Pb. To enhance the Pb sensing system, we also compared modified ThT derivatives, including the newly synthesized propyl-substituted ThT (ThT-P) and butyl-substituted ThT (ThT-B).
View Article and Find Full Text PDFOsteoarthr Cartil Open
March 2025
Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
Objective: Osteoarthritis, a degenerative joint disease, requires innovative therapies due to the limited ability of cartilage to regenerate. Since mesenchymal stem cells (MSCs) provide a cell source for chondrogenic cells, we hypothesize that chemicals capable of enhancing the chondrogenic potential of MSCs with transforming growth factor-beta (TGFβ) in vitro may similarly promote chondrogenesis in articular cartilage in vivo.
Design: Chemical compounds that enhance the TGFβ signaling for chondrogenesis were investigated utilizing mesenchymal stem cells derived from human induced pluripotent stem cells.
Bioinorg Chem Appl
January 2025
Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Application Théranostiques (LBVAT), University of Tunis El Manar, Tunis 1002, Tunisia.
The efficacy of available treatments for melanoma is limited by side effects and the rapidly emerging resistance to treatment. In this context, the decavanadate compounds represent promising tools to design efficient therapeutic agents. In our study, we synthesized a dimagnesium disodium decavanadate icosahydrate compound (MgNaVO·20HO) and investigated its structure stability as well as its antimelanoma effects.
View Article and Find Full Text PDFJ Mol Model
January 2025
Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
Context: Inspired by the newly synthesized endohedral fullerene T CH@C (1) and based on extensive density functional theory calculations, we predict herein a series of endohedral borafullerenes C CH@BC (4), T BH@BC (5), C HO@BC (6), C NH@BC (7), and T C@BC (8) which possess a BC (3) shell isovalent with C, with the neutral D C@BC (9) obtained from C@BC (8) by symmetric C─B substitutions. Detailed adaptive natural density partitioning (AdNDP) bonding analyses and iso-chemical shielding surfaces (ICSSs) calculations indicate that these core-shell species are spherically aromatic in nature, rendering high stability to the systems. More interestingly, based on the calculated effective donor-acceptor interaction between LP(O) → LV(B@BC) in HO@BC (6), we propose the concept of boron bond (BB) in chemistry which is defined as the in-phase orbital overlap between an electronegative atom A as lone-pair (LP) donor and an electron-deficient boron atom with a lone vacant (LV) orbital as LP acceptor.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Physics, Jnanabharathi, Bangalore University, Bengaluru, 560056, Karnataka, India.
In this report the photophysical property of newly synthesized fluorescein based derivative 2-(5-((2,4-dichlorophenyl)diazenyl)-6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid has studied by spectroscopic and theoretical that is by Density Functional Theory technique. The structural and functional group of the synthesized molecule was confirmed by nuclear magnetic resonance and fourier transform infrared spectroscopy technique, and from the result so far obtained has been confirmed that molecule has a stable structure and confirmed the presence the functional groups present in the sample. The optical properties of the molecule are studied using the spectroscopic technique and it has revealed the solute-solvent interaction behaviour of the molecule and it has been observed that the bathochromic shift was of about 5 nm, from the fluorescence measurement it has revealed that the emission has been observed at green region and from the power spectra it has been confirmed the same.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!