Background: Recombination between hepatitis C single stranded RNA viruses is a rare event. Natural viable intragenotypic and intergenotypic recombinants between 1b-1a, 1a-1c and 2k-1b, 2i-6p, respectively, have been reported. Diagnostically recombinants represent an intriguing challenge. Hepatitis C genotype is defined by interrogation of the sequence composition of the 5' untranslated region [5'UTR]. Occasionally, ambiguous specimens require further investigation of the genome, usually by interrogation of the NS5B region. The original purpose of this study was to confirm the existence of a suspected mixed genotype infection of genotypes 2 and 4 by clonal analysis at the NS5B region of the genome in two specimens from two separate individuals. This initial identification of genotype was based on analysis of the 5'UTR of the genome by reverse line probe hybridisation [RLPH].
Results: The original diagnosis of a mixed genotype infection was not confirmed by clonal analysis of the NS5B region of the genome. The phylogenetic analysis indicated that both specimens were natural intergenotypic recombinant forms of HCV. The recombination was between genotypes 2k and 1b for both specimens. The recombination break point was identified as occurring within the NS2 region of the genome.
Conclusion: The viral recombinants identified here resemble the recombinant form originally identified in Russia. The RLPH pattern observed in this study may be a signature indicative of this particular type of intergenotype recombinant of hepatitis C meriting clonal analysis of NS2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1654145 | PMC |
http://dx.doi.org/10.1186/1743-422X-3-95 | DOI Listing |
BMJ Open Gastroenterol
January 2025
Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
Objective: The emergence of resistance-associated substitutions (RASs) poses a significant challenge to the effective treatment of hepatitis C virus (HCV) infection using direct-acting antivirals. This study's objective was to observe the prevalence of HCV genotypes and RAS within the Former Soviet Union (FSU) countries.
Methods: We analysed 60 NS3, 313 NS5A and 1119 NS5B sequences of HCV deposited in open-access databases from 11 FSU countries for the prevalence of genotypes and the presence of RAS using the Geno2Pheno software.
J Virol Methods
December 2024
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China. Electronic address:
Background: Hepatitis C virus (HCV) resistance-associated substitutions (RASs) have a significant impact on the treatment of HCV with direct-acting antivirals (DAAs). However, limited research has been conducted, and no standardized methods for detecting RASs in mainland China.
Objectives: To develop and apply a novel method for detecting HCV RASs in HCV RNA-positive patients in Linzhou, China.
Infect Genet Evol
January 2025
Scientific Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China. Electronic address:
Hepatitis C still poses a threat to public safety, and there are few reports of hepatitis C virus (HCV) in Heilongjiang Province. Therefore, we aimed to study the epidemiology and resistance-associated substitutions (RASs) of HCV in Heilongjiang and explore the efficacy of treatment. 7019 specimens from Heilongjiang Province were subjected to the genotype identification.
View Article and Find Full Text PDFFront Cell Infect Microbiol
November 2024
Department of Infectious Diseases, The First People's Hospital of Kashi Prefecture, Kashi, China.
Introduction: The hepatitis C virus (HCV) poses a major global health challenge, with its non-structural proteins being essential for viral replication and pathogenesis. Mutations in these proteins significantly contribute to drug resistance, necessitating innovative therapeutic strategies. This study aims to identify epitope-based therapeutic targets in the non-structural proteins of HCV genotype 1, employing in-depth in silico tools to counteract emerging drug resistance.
View Article and Find Full Text PDFHepatol Res
November 2024
Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!