Phthalcon-11 (aquocyanophthalocyaninatocobalt (III)) forms semiconducting nanocrystals that can be dispersed in epoxy coatings to obtain a semiconducting material with a low percolation threshold. We investigated the structure-conductivity relation in this composite and the deviation from its optimal realization by combining two techniques. The real parts of the electrical conductivity of a Phthalcon-11/epoxy coating and of Phthalcon-11 powder were measured by dielectric spectroscopy as a function of frequency and temperature. Conducting atomic force microscopy (C-AFM) was applied to quantify the conductivity through the coating locally along the surface. This combination gives an excellent tool to visualize the particle network. We found that a large fraction of the crystals is organized in conducting channels of fractal building blocks. In this picture, a low percolation threshold automatically leads to a conductivity that is much lower than that of the filler. Since the structure-conductivity relation for the found network is almost optimal, a drastic increase in the conductivity of the coating cannot be achieved by changing the particle network, but only by using a filler with a higher conductivity level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp063567w | DOI Listing |
ACS Polym Au
August 2023
Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States.
The ionic conductivity in lamellar block copolymer electrolytes is often anisotropic, where the in-plane conductivity exceeds the through-plane conductivity by up to an order of magnitude. In a prior work, we showed significant anisotropy in the ionic conductivity of a lamellar block copolymer based on polystyrene (PS) and a polymer ionic liquid (PIL), and we proposed that the through-film ionic conductivity was depressed by layering of lamellar domains near the electrode surface. In the present work, we first tested that conclusion by measuring the through-plane ionic conductivity of two model PIL-based systems having controlled interfacial profiles using impedance spectroscopy.
View Article and Find Full Text PDFJ Am Chem Soc
July 2023
The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8581, Chiba, Japan.
Nat Commun
March 2013
CIC nanoGUNE Consolider, 20018 Donostia-San Sebastián, Spain.
High-resolution characterization methods play a key role in the development, analysis and optimization of nanoscale materials and devices. Because of the various material properties, only a combination of different characterization techniques provides a comprehensive understanding of complex functional materials. Here we introduce correlative infrared-electron nanoscopy, a novel method yielding transmission electron microscope and infrared near-field images of one and the same nanostructure.
View Article and Find Full Text PDFJ Phys Chem B
November 2006
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Phthalcon-11 (aquocyanophthalocyaninatocobalt (III)) forms semiconducting nanocrystals that can be dispersed in epoxy coatings to obtain a semiconducting material with a low percolation threshold. We investigated the structure-conductivity relation in this composite and the deviation from its optimal realization by combining two techniques. The real parts of the electrical conductivity of a Phthalcon-11/epoxy coating and of Phthalcon-11 powder were measured by dielectric spectroscopy as a function of frequency and temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!