The electroosmotic behavior of the rutile polymorph of titanium dioxide was explored as a function of the crystallographic orientation. Atomic force microscopy (AFM) was employed to make high-resolution force spectroscopy measurements between a silica sphere attached to a traditional, contact-mode AFM cantilever and TiO2(110), TiO2(100), and TiO2(001) surfaces in aqueous solutions. Measurements were taken in multiple solution conditions across a broad range of pH values, and the resultant force-distance curves were used to deduce relative behaviors of each orientation of rutile, with particular interest in changes of the isoelectric point (iep). Differences in the iep as a function of orientation are explained in terms of differences in both the coordination number and density of acidic and basic sites on the surface. The results were supported by angle-resolved X-ray photoelectron spectroscopy (XPS) measurements of a nominal monolayer of palladium metal deposited on each of the three orientations studied. The palladium monolayer served as a means of probing the relative electron affinities of the three surfaces studied, which were exhibited in shifts of the palladium XPS peak that corresponded to differences in the binding energy as a function of the substrate orientation. The correlation between the rutile orientation and the shift in the palladium binding energy corresponded directly to the relationship between the isoelectric point and the orientation, with the surface of lowest isoelectric point exhibiting the highest Pd binding energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la061900h | DOI Listing |
Genes (Basel)
January 2025
Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea.
: Abiotic stresses such as salinity and drought significantly constrain crop cultivation and affect productivity. Quinoa ( Willd.), a facultative halophyte, exhibits remarkable tolerance to drought and salinity stresses, making it a valued model for understanding stress adaptation mechanisms.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey.
: Tannic acid (TA) is a well-known natural phenolic acid composed of ten gallic acids linked to each other with ester bonding possessing excellent antioxidant properties in addition to antimicrobial and anticancer characteristics. Arginine (ARG) is a positively charged amino acid at physiological pH because of nitrogen-rich side chain. : Here, poly(tannic acid-co-arginine) (p(TA-co-ARG)) particles at three mole ratios, TA:ARG = 1:1, 1:2, and 1:3, were prepared via a Mannich condensation reaction between TA and ARG by utilizing formaldehyde as a linking agent.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Department of Biology, Faculty of Sciences, Al-Baha University, Al-Baha 65729, Saudi Arabia.
Understanding the ammonium (NH) uptake and transport systems, particularly genes, is important for plant growth and defense. However, there is a lack of research on identifying and analyzing genes in pomegranate, emphasizing the need for further investigation in this area. Five genes ( to ) were identified, all of which contain the PF00909 domain, a feature of ammonium transporters.
View Article and Find Full Text PDFLangmuir
January 2025
Chemistry and Structure of novel Materials, University of Siegen, Paul-Bonatz Strasse 9-11, 57068 Siegen, Germany.
The surface charge of metal oxides is an important property that significantly contributes to a wide range of phenomena, including adsorption, catalysis, and material science. The surface charge can be predicted by determining the isoelectric point (IEP) of a material and the pH of a solution. Although there have been several studies of the IEP of metal oxide (nano)particles, only a few have reported the IEP of metal oxide films.
View Article and Find Full Text PDFBiotechnol Prog
January 2025
Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
Type 2 diabetes mellitus (T2DM) and obesity are critical global health issues with rising incidence rates. Glucagon-like peptide-1 (GLP-1) analogues have emerged as effective treatments due to their ability to regulate blood glucose levels and gastric emptying through central nervous signals involving hypothalamic receptors, such as leptin. To address the short plasma half-life of native GLP-1, a C-16 fatty acid was conjugated to lysine in the GLP-1 analogue sequence to enhance its longevity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!