Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering.

J Biomed Mater Res B Appl Biomater

Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Published: July 2007

Polymer porous scaffolds and hydrogels have been separately employed as analogues of the native extra-cellular matrix (ECM). However, both of these two kinds of materials have their own advantages and shortcomings. In this work, an attempt to combine the advantages of these two kinds of materials is carried out. Poly-L-lactide (PLLA) scaffolds with good mechanical properties were prepared by thermally induced phase separation, which were then filled with hydrogel aiming at entrapment of cells within a support of predefined shape. Agar, which has a function to promote chondrogenesis, was selected to entrap chondrocytes, acting as analogues of native ECM. A straight forward merit of this construct is that both mechanical strength and macroscopic shape, and analogous ECM can be simultaneously achieved. The morphology and distribution of the chondrocytes were studied by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The cell growth behaviors were determined by MTT assay and collagen and glycosaminoglycan (GAG) secretion. After culture for 7 and 14 days, the cells in the construct were round and surrounded by the hydrogel. The MTT viability and the cell secretion in the chondrocytes/agar/scaffold construct were also higher than that of the chondrocytes/scaffold construct (control). Gelatin was further introduced into the construct, yielding improved GAG secretion and cytoviability. After implantation in the subcutaneous dorsum of nude mice for 4 weeks, cartilage-like specimens maintaining their original rectangular shapes were harvested. Histological examination showed that new cartilage was regenerated and a large quantity of collagen and GAG were secreted, while the cells in the control PLLA scaffold turned to be fibroblast-like with less secretion of extracellular matrices. The method provides a useful pathway of scaffold preparation and cell transplantation, which can achieve suitable mechanical properties and good cell performance simultaneously.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.30721DOI Listing

Publication Analysis

Top Keywords

porous scaffolds
8
analogues native
8
kinds materials
8
mechanical properties
8
gag secretion
8
construct
5
hydrogel-filled polylactide
4
polylactide porous
4
scaffolds cartilage
4
cartilage tissue
4

Similar Publications

3D-Printed PCL/SrHA@DFO Bone Tissue Engineering Scaffold with Bone Regeneration and Vascularization Function.

ACS Appl Bio Mater

January 2025

School of Materials Science and Physics, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.

The application of a three-dimensional (3D)-printed biological functional scaffold in the repair of bone defects is a promising strategy. In this study, strontium-containing hydroxyapatite (SrHA) powder was synthesized by the hydrothermal method, and then poly(ε-caprolactone) (PCL)/HA and PCL/SrHA composite scaffolds were prepared by the high-temperature melt extrusion 3D printing technology. The basic physical and chemical properties, in vitro biological properties, osteogenesis, and angiogenesis abilities of the scaffold were studied.

View Article and Find Full Text PDF

Development of multifunctional PAA-alginate-carboxymethyl cellulose hydrogel-loaded fiber-reinforced biomimetic scaffolds for controlled release of curcumin.

Int J Biol Macromol

January 2025

MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center for Next-Generation Sensor Research and Development, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:

Critical-sized bone defects in osteosarcoma treatment demand multifunctional scaffolds that must effectively integrate two key functions, promoting osteogenesis and delivering targeted chemoprevention. This study introduces a dual-component system featuring pH-responsive hydrogels and hydroxyapatite-based fiber-reinforced biomimetic scaffolds designed for controlled and localized curcumin delivery, while addressing its solubility and stability issues. The hydrogel system comprises a double network of polyacrylic acid, sodium alginate, carboxymethyl cellulose, and potato starch, specifically modified to encapsulate curcumin.

View Article and Find Full Text PDF

Flexible sweat sensors play a crucial role in health monitoring and disease prevention by enabling real-time, non-invasive assessment of human physiological conditions. Sweat contains a variety of biomarkers, offering valuable insights into an individual's health status. In this study, we developed an advanced flexible electrochemical sensor featuring reduced graphene oxide (rGO)-based electrodes, modified with a composite material comprising nitrogen and sulfur co-doped holey graphene (HG) and MXene, with in-situ-grown TiO nanoparticles on the MXene.

View Article and Find Full Text PDF

Two-dimensional layered materials (2DLMs) have received increasing attention for their potential in bioelectronics due to their favorable electrical, optical, and mechanical properties. The transformation of the planar structures of 2DLMs into complex 3D shapes is a key strategic step toward creating conformal biointerfaces with cells and applying them as scaffolds to simultaneously guide their growth to tissues and enable integrated bioelectronic monitoring. Using a strain-engineered self-foldable bilayer, we demonstrate the facile formation of predetermined 3D microstructures of 2DLMs with controllable curvatures, called microrolls.

View Article and Find Full Text PDF

Graphene oxide scaffolds promote functional improvements mediated by scaffold-invading axons in thoracic transected rats.

Bioact Mater

May 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.

Millions of patients and their caretakers live and deal with the devastating consequences of spinal cord injury (SCI) worldwide. Despite outstanding advances in the field to both understand and tackle these pathologies, a cure for SCI patients, with their peculiar characteristics, is still a mirage. One of the most promising therapeutic strategies to date for these patients involves the use of epidural electrical stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!