Integration of an orthopedic prosthesis for bone repair must be associated with osseointegration and implant fixation, an ideal that can be approached via topographical modification of the implant/bone interface. It is thought that osteoblasts use cellular extensions to gather spatial information of the topographical surroundings prior to adhesion formation and cellular flattening. Focal adhesions (FAs) are dynamic structures associated with the actin cytoskeleton that form adhesion plaques of clustered integrin receptors that function in coupling the cell cytoskeleton to the extracellular matrix (ECM). FAs contain structural and signalling molecules crucial to cell adhesion and survival. To investigate the effects of ordered nanotopographies on osteoblast adhesion formation, primary human osteoblasts (HOBs) were cultured on experimental substrates possessing a defined array of nanoscale pits. Nickel shims of controlled nanopit dimension and configuration were fabricated by electron beam lithography and transferred to polycarbonate (PC) discs via injection molding. Nanopits measuring 120 nm diameter and 100 nm in depth with 300 nm center-center spacing were fabricated in three unique geometric conformations: square, hexagonal, and near-square (300 nm spaced pits in square pattern, but with +/-50 nm disorder). Immunofluorescent labeling of vinculin allowed HOB adhesion complexes to be visualized and quantified by image software. Perhipheral adhesions as well as those within the perinuclear region were observed, and adhesion length and number were seen to vary on nanopit substrates relative to smooth PC. S-phase cells on experimental substrates were identified with bromodeoxyuridine (BrdU) immunofluorescent detection, allowing adhesion quantification to be conducted on a uniform flattened population of cells within the S-phase of the cell cycle. Findings of this study demonstrate the disruptive effects of ordered nanopits on adhesion formation and the role the conformation of nanofeatures plays in modulating these effects. Highly ordered arrays of nanopits resulted in decreased adhesion formation and a reduction in adhesion length, while introducing a degree of controlled disorder present in near-square arrays, was shown to increase focal adhesion formation and size. HOBs were also shown to be affected morphologicaly by the presence and conformation of nanopits. Ordered arrays affected cellular spreading, and induced an elongated cellular phenotype, indicative of increased motility, while near-square nanopit symmetries induced HOB spreading. It is postulated that nanopits affect osteoblast-substrate adhesion by directly or indirectly affecting adhesion complex formation, a phenomenon dependent on nanopit dimension and conformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.20319 | DOI Listing |
Sci Rep
December 2024
Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Lines of evidence have indicated that type 2 diabetes mellitus (T2DM) is an independent risk factor for osteoarthritis (OA) progression. However, the study focused on the relationship between T2DM and OA at the transcriptional level remains empty. We downloaded OA- and T2DM-related bulk RNA-sequencing and single-cell RNA sequencing data from the Gene Expression Omnibus (GEO) dataset.
View Article and Find Full Text PDFSci Rep
December 2024
Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
Randall's plaque (RP) is recognized as a precursor lesion for kidney stones, with its formation and progression potentially linked to oxidative stress. Previous studies have provided limited insights into the underlying mechanisms of RP, failing to fully elucidate its molecular pathways. To investigate the relationship between oxidative stress and RP, we employed bioinformatics approaches to identify key genes, predict associated pathways and drug molecules, analyze variations in immune cell populations, and construct diagnostic models.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand.
This study presents a new approach for fabricating 3D-printed self-healing hydrogels via light-assisted 3D printing, utilizing Schiff-base and covalent bonding formations resulting from the reaction between amine and aldehyde functional groups alongside the photopolymerization of methacrylate groups. Two distinct polymers, carboxymethyl chitosan (CMCs) and dextran, were first modified to yield methacrylate-modified carboxymethyl chitosan (CMCs-MA) and oxidized dextran (OD). The structural modifications of these polymers were confirmed using spectroscopic techniques, including H NMR and FTIR analyses.
View Article and Find Full Text PDFAim: To study the prognostic significance of hematologic indices: neutrophils/lymphocytes (N/L), platelets/lymphocytes (P/L) and lymphocytes/C-reactive protein (L/CRP) in relation to the complicated course of new coronavirus infection (COVID-19), as well as their correlation with COVID-19 course severity indices and endothelial dysfunction marker sVCAM-1.
Materials And Methods: 103 patients with new coronavirus infection (COVID-19) were included in the study. Based on the data of multispiral computed tomography (CT) of the chest organs, all patients were divided into 3 groups: CT group 1 - 30 patients, CT group 2 - 62 patients and CT group 3 - 11 patients.
Biomacromolecules
December 2024
School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
Persistent oxidative stress following bone defects significantly impedes the repair of bone tissue. Designing an antioxidative hydrogel with a suitable mechanical strength can help alter the local microenvironment and promote bone defect healing. In this work, α-lipoic acid (LA), a natural antioxidant small molecule, was chemically cross-linked with lipoic acid-functionalized poly(ethylene glycol) (PEG, = 6k or 10k) in sodium bicarbonate solution, to prepare LA-PEG hydrogels (LP, = 6k or 10k).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!