We have examined alpha1beta2gamma2L GABAA receptor modulation by the endogenous steroids allopregnanolone (3alpha5alphaP), pregnenolone sulfate, and beta-estradiol in the absence and presence of ethanol. Coapplication of 0.1 to 1% (17-170 mM) ethanol influenced receptor modulation by 3alpha5alphaP but not that by pregnenolone sulfate or beta-estradiol. One of the three kinetic effects evident in channel potentiation by 3alpha5alphaP, prolongation of the longest-lived open time component (OT3), was affected by ethanol with the midpoint of its dose-response curve moved to lower steroid concentrations by 2 orders of magnitude without significantly affecting the maximal effect. Manipulations designed to affect the ability of 3alpha5alphaP to prolong OT3 also affected OT3 prolongation in the presence of ethanol. A mutation to the gamma2 subunit, which reduces the ability of 3alpha5alphaP to prolong OT3, also reduces the interaction between ethanol and 3alpha5alphaP. And the presence of the competitive steroid antagonist (3alpha,5alpha)-17-phenylandrost-16-en-3-ol (17-PA) diminishes the positive interaction between ethanol and 3alpha5alphaP on the GABAA receptor. Together, the findings suggest that steroid interactions with the classic steroid binding site underlie the effect seen in the presence of ethanol, and that ethanol acts by increasing the affinity of 3alpha5alphaP for the site. Tadpole behavioral assays showed that the presence of 3alpha5alphaP at a concentration ineffective at causing changes in tadpole behavior shifted the ethanol dose-response curve for loss of righting reflex to lower concentrations and that this effect was neutralized by coapplication of 17-PA with 3alpha5alphaP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.106.029942 | DOI Listing |
Brain Res Bull
January 2025
Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, 330006 Nanchang, Jiangxi, China. Electronic address:
Wogonin, an O-methylated flavonoid extracted from Scutellaria baicalensis, has demonstrated profound neuroprotective effects in a range of central nervous system (CNS) diseases. This review elucidates the pharmacological mechanisms underlying the protective effects of wogonin in CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury, epilepsy, anxiety, neurodegenerative diseases, and CNS infections. Wogonin modulates key signaling pathways, such as the MAPK, NF-κB, and ROS pathways, contributing to its anti-inflammatory, antioxidant, and antiapoptotic properties.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark.
GABA receptors (GABARs) are the major elements of inhibitory neurotransmission in the central nervous system (CNS). They are established targets for regulation by endogenous brain neuroactive steroids (NASs) such as pregnanolone. However, the complexity of de novo synthesis of NAS derivatives has hindered attempts to circumvent the principal limitations of using endogenous NASs, including selectivity and limited oral bioavailability.
View Article and Find Full Text PDFIBRO Neurosci Rep
December 2024
Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Previous investigations have revealed the role of GABAergic and serotonergic systems in the modulation of pain behavior. This research aimed to examine the effects of intracerebroventricular (i.c.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.
Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!