The effect of pre- and postnatal lead exposure on the development of the serotonergic system in striatum and brain stem was investigated. Serotonin and its metabolite 5-HIAA where determined by HPLC-EC. A significant decrease of 5-HT was detected in the brain stem at postnatal day 28. At both days 6 and 28 postnatal, 5-HIAA was reduced in striatum and brain stem. The results provide support to the hypothesis that developing 5-HT neurons are sensitive to relatively low levels of lead exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01959945DOI Listing

Publication Analysis

Top Keywords

lead exposure
12
brain stem
12
pre- postnatal
8
postnatal lead
8
serotonergic system
8
striatum brain
8
exposure serotonergic
4
system immature
4
immature rat
4
brain
4

Similar Publications

The microplastic menace: a critical review of its impact on marine photoautotrophs and their environment.

Environ Sci Pollut Res Int

January 2025

Applied Phycology and Biotechnology Department, CSIR- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, India, 364002.

Seaweeds contribute to the energy input in marine communities and affect the chemical makeup, species composition, nutrient availability, pH, and seawater oxygen levels. However, the annual introduction of 28.5 million tons of plastic waste into oceans makes up 85% of marine litter, which is expected to grow fourfold in the next 25 years, causing a rise in concern for human health and the environment.

View Article and Find Full Text PDF

Repetitive neonatal pain increases spinal cord DNA methylation of the µ-opioid receptor.

Pediatr Res

January 2025

Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands.

Background: Repetitive neonatal painful procedures experienced in the neonatal intensive care unit (NICU) are known to alter the development of the nociceptive system and have long-lasting consequences. Recent evidence indicates that NICU stay affects the methylation of the opioid receptor mu 1 encoding gene (Mor-1). Additionally, a preclinical model of neonatal procedural pain established lower adult post-operative MOR-1 levels in the spinal cord.

View Article and Find Full Text PDF

Environmentally persistent free radicals stimulate CYP2E1-mediated generation of reactive oxygen species at the expense of substrate metabolism.

Drug Metab Dispos

January 2025

Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana. Electronic address:

Environmentally persistent free radicals (EPFRs) are a recently recognized component of particulate matter that cause respiratory and cardiovascular toxicity. The mechanism of EPFR toxicity appears to be related to their ability to generate reactive oxygen species (ROS), causing oxidative damage. EPFRs were shown to affect cytochrome P450 (P450) function, inducing the expression of some forms through the Ah receptor.

View Article and Find Full Text PDF

Differential infection dynamics in mononuclear and polymorphonuclear cells during Salmonella Typhimurium infection and in vitro exposure to diazoxon.

Microb Pathog

January 2025

Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic 63173, Nayarit, México; Licenciatura en Biomedicina Ambiental Traslacional, Universidad Autónoma de Nayarit, Circuito C. Ney M. González, Ciudad del conocimiento, 63173 Tepic, Nay. México.

S. Typhimurium bacteria cause one of the most recurrent gastrointestinal diseases worldwide. This bacterium can settle in the gastrointestinal tract and internalize into different cellular strains, causing the formation of cellular reservoirs that subsequently lead to systemic dissemination.

View Article and Find Full Text PDF

Cyano-(3-phenoxyphenyl)methyl]3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate (cypermethrin) is a pyrethroid insecticide that is widely used to repel insects, such as cockroaches and ants. In addition to the target insects, its hazards have been outlined for carp; mice; and the nervous, reproductive, and gastrointestinal systems of humans. However, the effects of cypermethrin on the mammary tissue and milk production in dairy cattle remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!