The binding and oxidation of ferrous iron were studied in wild-type reaction centers and in mutants that have been modified to be both highly oxidizing and able to bind manganese [Thielges et al. (2005) Biochemistry 44, 7389-7394]. After illumination of wild-type reaction centers, steady-state optical spectroscopy showed that the oxidized bacteriochlorophyll dimer, P+, could oxidize iron but only as a second-order reaction at iron concentrations above 100 microM. In the modified reaction centers, P+ was reduced by iron in the presence of sodium bicarbonate with dissociation constants of approximately 1 microM for two mutants with different metal-binding sites. Transient optical spectroscopy showed that P+ was rapidly reduced with first-order rates of 170 and 275 s-1 for the two mutants. The dependence of the amplitude of this rate on the iron concentration yielded a dissociation constant of approximately 1 microM for both mutants, in agreement with the steady-state determination. The oxidation of bound iron by P+ was confirmed by the observation of a light-induced EPR signal centered at g values of 2.2 and 4.3 and attributed to high-spin Fe3+. Bicarbonate was required at pH 7 for low dissociation constants for both iron and manganese binding. The similarity between iron and manganese binding in these mutants provides insight into general properties of metal-binding sites in proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi061104a | DOI Listing |
ACS Nano
January 2025
Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States.
The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.
View Article and Find Full Text PDFJMIR Public Health Surveill
January 2025
Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.
Background: Numerous studies have assessed the risk of SARS-CoV-2 exposure and infection among health care workers during the pandemic. However, far fewer studies have investigated the impact of SARS-CoV-2 on essential workers in other sectors. Moreover, guidance for maintaining a safely operating workplace in sectors outside of health care remains limited.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115.
The cytoplasmic membrane of bacteria is composed of a phospholipid bilayer made up of a diverse set of lipids. Phosphatidylglycerol (PG) is one of the principal constituents and its production is essential for growth in many bacteria. All the enzymes required for PG biogenesis in have been identified and characterized decades ago.
View Article and Find Full Text PDFChem Rev
January 2025
Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China.
Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) , thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!