Introduction: Since undetectable BCR-ABL mRNA transcription does not always indicate eradication of the Ph+ CML clone and since transcriptionally silent Ph+ CML cells exist, quantitation by genomic PCR of bcr-abl genes can be clinically useful. Furthermore, hotspot mutations in the Abelson tyrosine kinase (ABLK) domain of the bcr-abl gene translocation in Philadelphia chromosome-positive (Ph+) chronic myeloid leukaemia (CML) cells confer resistance on the specific kinase blocking agent, STI571.
Materials And Methods: Genomic DNA from K562, CESS and patient CML cells were amplified using rapid cycle quantitative real-time polymerase chain reaction for the gene regions spanning the mutation hotspots. In assays for ABLK exons 4 or 6, exonic or intronic PCR primers were used.
Results: We show that separation of cycle threshold (CT) values for log-fold amplicon quantification was 2.9 cycles for ABLK exon 4, and 3.8 cycles for exon 6 with rapid amplification times. K562 CML cells were found to have a approximately 2 log-fold ABLK gene amplification. In contrast, patient CML cells had CT differences of 2.2 for both exon, suggesting that there was no significant ABLK gene amplification. DNA sequencing confirmed that neither K562 nor patient CML cells contained ABLK hotspot mutations. Messenger RNA transcription analysis permitted the assessment of BCR-ABL transcription, which was qualitatively correlated to genomic amplification.
Conclusions: This novel Q-PCR assay was found to have high fidelity and legitimacy, and potentially useful for monitoring minimal residual disease, transcriptionally silent Ph+ CML cells, and bcr-abl gene amplification.
Download full-text PDF |
Source |
---|
Discov Oncol
December 2024
Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.
Patients with chronic myeloid leukemia (CML) frequently develop resistance to tyrosine kinase inhibitors such as imatinib. In this study, we explored the role of the insulin-like growth factor 1 (IGF-1) signaling pathway in CML and imatinib resistance. An analysis of IGF-1 gene expression using public databases revealed elevated levels of insulin-like growth factor-binding proteins in patients with chronic-phase CML.
View Article and Find Full Text PDFCarcinogenesis
December 2024
Division of Hematology, Second Xiangya Hospital, Central South University, No.139th Renmin Middle Road, Changsha, 410011, Hunan, China.
Chronic myeloid leukemia (CML) is a malignant hyperplastic tumor that originats from pluripotent hematopoietic stem cells in the bone marrow. The introduction of tyrosine kinase inhibitors (TKIs) has significantly improved the survival rates of CML patients. This study aimed to identify immune-related genes (IRGs) associated with the response to imatinib therapy in CML.
View Article and Find Full Text PDFBioorg Chem
December 2024
Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:
Tyrosine kinase inhibitors (TKIs) have markedly improved the overall survival rate of patients with chronic myeloid leukemia (CML), enabling them to achieve a normal life expectancy. However, toxicity, relapse, and drug resistance continue to pose major challenges in the clinical treatment of CML. The progression of leukemia is directly connected to higher expression levels and enzymatic actions of matrix metalloproteinase-2 (MMP-2).
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
Treatment of chronic myeloid leukemia (CML) is a significant therapeutic challenge, and exploration of novel treatment approaches is an urgent necessity. This work investigates the anticancer properties of rutin-conjugated zinc oxide nanoparticles (Rut-ZnO NPs) against CML cells. Physicochemical properties of the NPs were studied by FT-IR, FE-SEM, XRD, zeta potential, and DLS analyses.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
December 2024
Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy.
FTO, an -methyladenosine (mA) and ,2'--dimethyladenosine (mA) RNA demethylase, is a promising target for treating acute myeloid leukemia (AML) due to the significant anticancer activity of its inhibitors in preclinical models. Here, we demonstrate that the FTO inhibitor FB23-2 suppresses proliferation across both AML and CML cell lines, irrespective of FTO dependency, indicating an alternative mechanism of action. Metabolomic analysis revealed that FB23-2 induces the accumulation of dihydroorotate (DHO), a key intermediate in pyrimidine nucleotide synthesis catalyzed by human dihydroorotate dehydrogenase (DHODH).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!