The norepinephrine transporter and pheochromocytoma.

Ann N Y Acad Sci

Division of Health Sciences, Murdoch University, South Street, MURDOCH, 6150, Perth, Western Australia, Australia.

Published: August 2006

AI Article Synopsis

Article Abstract

Pheochromocytomas are rare neuroendocrine tumors of chromaffin cell origin that synthesize and secrete excess quantities of catecholamines and other vasoactive peptides. Pheochromocytomas also express the norepinephrine transporter (NET), a molecule that is used clinically as a means of incorporating radiolabelled substrates such as 131I-MIBG (iodo-metaiodobenzylguanidine) into pheochromocytoma tumor cells. This allows the diagnostic localization of these tumors and, more recently, 131I-MIBG has been used in trials in the treatment of pheochromocytoma, potentially giving rise to NET as a therapeutic target. However, because of varying levels or activities of the transporter, the ability of 131I-MIBG to be consistently incorporated into tumor cells is limited, and therefore various strategies to increase NET functional activity are being investigated, including the use of traditional chemotherapeutic agents such as cisplatin or doxorubicin. Other aspects of NET discussed in this short review include the regulation of the transporter and how novel protein-protein interactions between NET and structures such as syntaxin 1A may hold the key to innovative ways to increase the therapeutic value of 131I-MIBG.

Download full-text PDF

Source
http://dx.doi.org/10.1196/annals.1353.029DOI Listing

Publication Analysis

Top Keywords

norepinephrine transporter
8
tumor cells
8
net
5
transporter pheochromocytoma
4
pheochromocytoma pheochromocytomas
4
pheochromocytomas rare
4
rare neuroendocrine
4
neuroendocrine tumors
4
tumors chromaffin
4
chromaffin cell
4

Similar Publications

Neurogenic orthostatic hypotension (NOH) is a significant non-motor manifestation of Parkinson's disease (PD), that substantially affects patient disability and has a powerful impact on the quality of life of PD patients, while also contributing to increased healthcare costs. This narrative review aims to summarize key insights into the diagnosis and management of NOH in individuals with PD. For diagnosing NOH, a recently introduced and valuable metric is the ΔHr/ΔSBP index.

View Article and Find Full Text PDF

Genetic and Neurochemical Profiles Underlying Cortical Morphometric Vulnerability to Parkinson's Disease.

Brain Res Bull

January 2025

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:

Background: Increasing evidence has documented cortical involvement at all stages of PD. The local vulnerabilities within certain brain regions in PD have been previously demonstrated, whereas its underlying genetic and neurochemical factors remain unclear. This study aims to investigate the spatial spectrum of cortical atrophy in Parkinson's disease (PD) and link these variances in gray matter properties and curvature respectively to putative molecular pathways and neurotransmitter factors.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a chronic neurodegenerative disorder marked by dopaminergic neuron degeneration in the substantia nigra. Emerging evidence suggests vitamin D3 (VD) plays a therapeutic role in PD, but its precise molecular mechanisms remain unclear. This study employed network pharmacology and bioinformatics to identify VD's hub targets and related pathways.

View Article and Find Full Text PDF

3,4-methylenedioxymethamphetamine (MDMA; commonly referred to as "ecstasy" or "molly") is a substituted amphetamine drug that is used recreationally for its acute psychoactive effects, including euphoria and increased energy, as well as prosocial effects such as increased empathy and feelings of closeness with others. Acute adverse effects can include hyperthermia, dehydration, bruxism, and diaphoresis. Post-intoxication phenomena may include insomnia, anhedonia, anxiety, depression, and memory impairment, which can persist for days following drug cessation.

View Article and Find Full Text PDF

The norepinephrine transporter (NET) is a key regulator of noradrenergic neurotransmission and homeostasis, regulating the norepinephrine levels in the brain and peripheral tissues. hNET is a major target in neuropsychiatric disorders such as major depressive disorder, autonomic dysfunction, and attention deficit hyperactivity disorder (ADHD). The human norepinephrine transporter gene (, ) contains 504 missense single nucleotide polymorphisms (SNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!