Differential uptake of photosynthetic and non-photosynthetic proteins by pea root plastids.

FEBS Lett

Faculty of Life Sciences, The University of Manchester, 3.614 Stopford Building, Oxford Road, Manchester, M13 9PT, UK.

Published: November 2006

AI Article Synopsis

Article Abstract

The photosynthetic proteins RuBiSCO, ferredoxin I and ferredoxin NADP(+)-oxidoreductase (pFNR) were efficiently imported into isolated pea chloroplasts but not into pea root plastids. By contrast non-photosynthetic ferredoxin III and heterotrophic FNR (hFNR) were efficiently imported into both isolated chloroplasts and root plastids. Chimeric ferredoxin I/III (transit peptide of ferredoxin I attached to the mature region of ferredoxin III) only imported into chloroplasts. Ferredoxin III/I (transit peptide of ferredoxin III attached to the mature region of ferredoxin I) imported into both chloroplasts and root plastids. This suggests that import depends on specific interactions between the transit peptide and the translocon apparatus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2006.10.057DOI Listing

Publication Analysis

Top Keywords

root plastids
16
ferredoxin iii
12
transit peptide
12
ferredoxin
9
pea root
8
efficiently imported
8
imported isolated
8
chloroplasts root
8
peptide ferredoxin
8
attached mature
8

Similar Publications

Ice plant (Mesembryanthemum crystallinum L.) is a halophyte and an inducible CAM plant. Ice plant seedlings display moderate salt tolerance, with root growth unaffected by 200 mM NaCl treatments, though hypocotyl elongation is hindered in salt-stressed etiolated seedlings.

View Article and Find Full Text PDF

Plant carotenoids are plastid-synthesized isoprenoids with roles as photoprotectants, pigments, and precursors of bioactive molecules such as the hormone abscisic acid (ABA). The first step of the carotenoid biosynthesis pathway is the production of phytoene from geranylgeranyl diphosphate (GGPP), catalyzed by phytoene synthase (PSY). GGPP produced by plastidial GGPP synthases (GGPPS) is channeled to the carotenoid pathway by direct interaction of GGPPS and PSY enzymes.

View Article and Find Full Text PDF

Plastid-localized plastoglobules (PGs) are monolayer lipid droplets typically associated with the outer envelope of thylakoid membranes in chloroplasts. The size and number of PGs can vary significantly in response to different environmental stimuli. Since the early 21st century, a variety of proteins attached to the surface of PGs have been identified and experimentally characterized using advanced biotechnological techniques, revealing their biological functions.

View Article and Find Full Text PDF

Phenylmercury stress induces root tip swelling through auxin homeostasis disruption.

Plant Mol Biol

December 2024

Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.

We previously reported that in Arabidopsis, the phytochelatin-mediated metal-detoxification machinery is also essential for organomercurial phenylmercury (PheHg) tolerance. PheHg treatment causes severe root growth inhibition in cad1-3, an Arabidopsis phytochelatin-deficient mutant, frequently accompanied by abnormal root tip swelling. Here, we examine morphological and physiological characteristics of PheHg-induced abnormal root tip swelling in comparison to Hg(II) stress and demonstrate that auxin homeostasis disorder in the root is associated with the PheHg-induced root tip swelling.

View Article and Find Full Text PDF

Folate Biosynthesis is Boosted in Legume Nodules.

Plant Cell Environ

November 2024

Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico.

Symbiotic nitrogen fixation (SNF) profoundly alters plant and bacteroid metabolism; however, SNF impact on folates and one-carbon (1C) metabolism are unknown. To explore this, SNF was induced in Phaseolus Vulgaris with Rhizobium etli. Nodules accumulated the highest folate concentration yet reported in a plant tissue (60 nmol/g fresh weight).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!