Harnessing the hypoxia-inducible factor in cancer and ischemic disease.

Biochem Pharmacol

Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, University of Nice, Centre A. Lacassagne, 33 Avenue Valombrose, 06189 Nice, France.

Published: February 2007

The alpha/beta-heterodimeric transcription factor hypoxia-inducible factor (HIF) functions when the oxygen level in tissues is low, i.e. when the tissue microenvironment becomes hypoxic, and is non-functional when the level of oxygen is high. Certain pathophysiological conditions such as ischemic disorders and cancer encounter low levels of local tissue oxygenation due to a defective or insufficient vasculature. Highly proliferating tumour cells rapidly form into a mass that becomes located too far from the vasculature to be nourished and oxygenated. Under such conditions HIF activates or represses a vast array of genes that in particular, initiate the formation of new blood vessels and modify metabolism. In this way the tumour mass re-establishes conditions favourable for further proliferation. Interest is being expressed in the direct repression or stimulation of HIF activity, respectively, in the treatment of cancer and of ischemic disorders. The modulation of other HIF-target genes implicated, in particular, in tumour metabolism and intracellular pH control may also prove to be useful in cancer therapy. However, before going further a better understanding of the basics of the HIF signalling pathway is essential. This review will introduce the reader to the molecular mechanisms that regulate HIF and some of the biological consequences of its action, in particular in tumour metabolism, growth and invasion. Approaches to either enforce tumour regression or increase blood vessel formation through the targeting of HIF or its downstream effectors will also be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2006.10.013DOI Listing

Publication Analysis

Top Keywords

hypoxia-inducible factor
8
cancer ischemic
8
ischemic disorders
8
tumour metabolism
8
hif
6
tumour
5
harnessing hypoxia-inducible
4
cancer
4
factor cancer
4
ischemic disease
4

Similar Publications

Red and blue LED light increases the survival rate of random skin flaps in rats after MRSA infection.

Lasers Med Sci

January 2025

Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China.

Skin flap transplantation is a conventional wound repair method in plastic and reconstructive surgery, but infection and ischemia are common complications. Photobiomodulation (PBM) therapy has shown promise for various medical problems, including wound repair processes, due to its capability to accelerate angiogenesis and relieve inflammation. This study investigated the effect of red and blue light on the survival of random skin flaps in methicillin-resistant Staphylococcus aureus (MRSA)-infected Sprague Dawley (SD) rats.

View Article and Find Full Text PDF

Associations of Short-Term Ozone Exposure With Hypoxia and Arterial Stiffness.

J Am Coll Cardiol

January 2025

SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Research Station of Alpine Ecology Environment and Health at Tibet University, Lhasa, Tibet Autonomous Region, China. Electronic address:

Background: Epidemiological studies reported associations between ozone (O) exposure and cardiovascular diseases, yet the biological mechanisms remain underexplored. Hypoxia is a shared pathogenesis of O-associated diseases; therefore, we hypothesized that O exposure may induce changes in hypoxia-related markers, leading to adverse cardiovascular effects.

Objectives: This study aimed to investigate associations of short-term O exposure with hypoxic biomarkers and arterial stiffness.

View Article and Find Full Text PDF

Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration.

Antioxid Redox Signal

January 2025

Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.

The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology.

View Article and Find Full Text PDF

Vascular HIF2 Signaling Prevents Cardiomegaly, Alveolar Congestion, and Capillary Remodeling During Chronic Hypoxia.

Arterioscler Thromb Vasc Biol

January 2025

Metabolic and Immune Diseases Department, Biomedical Research Institute Sols-Morreale (IIBM), National Research Council (CSIC), Autonoma University of Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.).

Background: Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia-inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed.

View Article and Find Full Text PDF

Objective: To explore the mechanism of hyperbaric oxygen therapy in inhibiting subchondral bone angiogenesis and delaying the progression of osteoarthritis through the PHD2/HIF-1α signaling pathway.

Methods: Mice were randomly divided into three groups (control group, osteoarthritis group, and hyperbaric oxygen treatment group). The effect of hyperbaric oxygen therapy on osteoarthritis was evaluated using Micro-CT, Safranin O-Fast Green staining, and detection of osteoarthritis inflammation markers (MMP-13, ADAMTS-5, Col2a1, and Aggrecan).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!