One-trial passive avoidance learning (PAL), where the aversive stimulus is the bitter-tasting substance methylanthranilate (MeA), affects neuronal and synaptic plasticity in learning-related areas of day-old domestic chicks (Gallus domesticus). Here, cell proliferation was examined in the chick forebrain by using 5-bromo-2-deoxyuridine (BrdU) at 24 h and 9 days after PAL. At 24 h post-BrdU injection, there was a significant reduction in labelling in MeA-trained chicks in both the dorsal hippocampus and area parahippocampalis, in comparison to controls. Moreover, double-immunofluorescence labelling for BrdU and the nuclear neuronal marker (NeuN) showed a reduction of neuronal cells in the dorsal hippocampus of the MeA-trained group compared with controls (35 and 49%, respectively). There was no difference in BrdU labelling in hippocampal regions between trained and control groups of chicks at 9 days post-BrdU injection; however, the number of BrdU-labelled cells was considerably lower than at 24 h post-BrdU injection, possibly due to migration of cells within the telencephalon rather than cell loss as apoptotic analyses at 24 h and 9 days post-BrdU injection did not demonstrate differences in cell death between treatment groups. Cortisol levels increased in the chick hippocampus of MeA-trained birds 20 min after PAL, suggesting the possibility of a stress-related mechanism of cell proliferation reduction in the hippocampus. In contrast to hippocampal areas, the olfactory bulb, an area strongly stimulated by the strong-smelling MeA, showed increased cell genesis in comparison to controls at both 24 h and 9 days post-training.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2006.05133.xDOI Listing

Publication Analysis

Top Keywords

post-brdu injection
16
cell proliferation
12
passive avoidance
8
chick hippocampus
8
dorsal hippocampus
8
comparison controls
8
hippocampus mea-trained
8
days post-brdu
8
cell
6
hippocampus
5

Similar Publications

Introduction: Valproic acid (VPA) is an anticonvulsant/antiepileptic drug that regulates neurogenesis. Its effects vary depending on the timing of exposure and the types of neural progenitors involved. Neonatal exposure to VPA causes autism spectrum disorder-like behaviors in some mammalian species, including ferrets.

View Article and Find Full Text PDF

Dentate gyrus neurons that are born at the peak of development, but not before or after, die in adulthood.

Brain Behav

October 2019

Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.

Introduction: In the dentate gyrus of the rodent hippocampus, neurogenesis begins prenatally and continues to the end of life. Adult-born neurons often die in the first few weeks after mitosis, but those that survive to 1 month persist indefinitely. In contrast, neurons born at the peak of development are initially stable but can die later in adulthood.

View Article and Find Full Text PDF

Adult neurogenesis occurs in brain subventricular zone (SVZ). Our recent data reveal an elevated proliferation of BrdU(+) cells in SVZ following subchronic manganese (Mn) exposure in rats. This study was designed to distinguish Mn effect on the critical stage of adult neurogenesis, ie, proliferation, migration, survival and differentiation from the SVZ via the rostral migratory stream to the olfactory bulb (OB).

View Article and Find Full Text PDF

Proliferating cells in the adolescent rat amygdala: Characterization and response to stress.

Neuroscience

December 2015

Dept. of Neurobiology and Anatomy, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14452, United States; Dept. of Psychiatry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14452, United States. Electronic address:

The amygdala is a heterogeneous group of nuclei that plays a role in emotional and social learning. As such, there has been increased interest in its development in adolescent animals, a period in which emotional/social learning increases dramatically. While many mechanisms of amygdala development have been studied, the role of cell proliferation during adolescence has received less attention.

View Article and Find Full Text PDF

Accumulated evidence suggests that enhanced neurogenesis stimulated by ischemic injury contributes to stroke outcome. However, it is unclear whether hyperglycemia, which is frequently tested positive in patients with acute ischemic stroke, influences stroke-induced neurogenesis. The aim of the present study is to examine the effect of hyperglycemia on stroke-induced neurogenesis in a rat model of transient focal cerebral ischemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!