The present treatment of atrial fibrillation by radiofrequency catheter ablation requires long continuous lesions in the thin walled left atrium where side effects may lead to serious complications. Better understanding of the physical processes that take place during ablation may help to improve the quality, safety, and outcome of these procedures. These processes include the distribution of power between blood, tissue, and patient; the mechanisms of tissue heating and coagulum formation; the relation between tissue and electrode temperatures; and the effects of increased electrode size and internal and external electrode cooling. With normal electrode-tissue contact, only a fraction of all power is effectively delivered to the tissue. Due to the variability of blood flow cooling, applied power and electrode temperature rise are poor indicators of lesion formation. With a longer electrode, the efficiency of tissue heating is decreased and the greater variation in tissue contact caused by electrode orientation makes lesion formation even more unpredictable. The absence of impedance rise during ablation does not guarantee the absence of blood clot formation on the tissue contact site. Blood clots may unnoticeably be created on the lesion surface and are caused by thermal denaturization of blood proteins, independent of heparinization. Irrigated ablation with external flush may prevent blood clot formation. Irrigation minimally affects lesion size by cooling the tissue surface. Larger lesions may only be created by the application of higher power levels. Electrode cooling, however, impedes electrode temperature feed back and blinds the operator for excessive tissue heating. External cooling alone with preservation of temperature feed back is a promising concept that may lead to improved procedural safety and success.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1540-8159.2006.00533.x | DOI Listing |
J Mater Chem B
January 2025
Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Biomedical Engineering , University of Wisconsin-Milwaukee College of Engineering and Applied Science, 3203 N Downer Ave, Milwaukee, Milwaukee, Wisconsin, 53211-3029, UNITED STATES.
Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.
View Article and Find Full Text PDFActa Bioeng Biomech
September 2024
Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland.
: The synthesis of fluoridated apatite consists of several stages, among which the heat treatment has a significant impact on the physical and chemical properties. The present study aims to elucidate the influence of two different sintering methods on fluoride-substituted apatite properties. : For this purpose, a two F-substituted apatites were produced by heat treatment in different ways called "rapid sintering" and "slow sintering".
View Article and Find Full Text PDFNanoscale
January 2025
Nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain.
All-optical theranostic systems are sought after in nanomedicine, since they combine in a single platform therapeutic and diagnostic capabilities. Commonly in these systems the therapeutic and diagnostic/imaging functions are accomplished with plasmonic photothermal agents and luminescent nanoparticles (NPs), respectively. For maximized performance and minimized side effects, these two modalities should be independently activated, , in a decoupled way, using distinct near infrared (NIR) wavelengths: a radiation window wherein photon-tissue interaction is reduced.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China.
Food security is threatened by global warming, which also affects agricultural output. Various components of cells perceive elevated temperatures. Different signaling pathways in plants distinguish between the two types of temperature increases, mild warm temperatures and extremely hot temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!