Toll-like receptors (TLRs) are sensors of microbial products that initiate host defense responses in multicellular organisms. They are mainly linked to innate immunity and bridging to adaptive immunity, signaling through different TLRs responsible for a wide range of biological responses. The intracellular signaling pathways through Toll/interleukin-1 receptor (IL-1R) domains result in recruitment of the cytoplasmic adaptor molecules, with subsequent activation of a signaling cascade leading to nuclear factor-kappa B (NF-kappaB). TLR-signaling induces host inflammatory response and the inflammation becomes more severe in the absence of several extra and intra cellular negative regulators of TLR-signaling. In the intestine, TLR-dependent activation of NF-kappaB plays a vital role in maintaining epithelial homeostasis as well as regulating infections and inflammation, while dysregulation of TLR-signaling is associated with the pathogenesis of inflammatory bowel diseases (IBD). Recent findings regarding innate immunity-mediated regulation of intestinal pathophysiology prove that development of new drugs targeting TLRs including antagonists of TLR-signaling and agonists of their negative regulators has a potential impact on therapeutic strategies for intestinal inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138161206778743448DOI Listing

Publication Analysis

Top Keywords

toll-like receptors
8
negative regulators
8
therapeutic targeting
4
targeting toll-like
4
receptors gastrointestinal
4
gastrointestinal inflammation
4
inflammation toll-like
4
receptors tlrs
4
tlrs sensors
4
sensors microbial
4

Similar Publications

The success of introduced species often relies on flexible traits, including immune system traits. While theories predict non-natives will have weak defences due to decreased parasite pressure, effective parasite surveillance remains crucial, as infection risk is rarely zero and the evolutionary novelty of infection is elevated in non-native areas. This study examines the relationship between parasite surveillance and cytokine responsiveness in native and non-native house sparrows, hypothesizing that non-natives maintain high pathogen surveillance while avoiding costly inflammation.

View Article and Find Full Text PDF

Regulation of pattern recognition receptor signaling by palmitoylation.

iScience

February 2025

Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Pattern recognition receptors (PRRs), consisting of Toll-like receptors, RIG-I-like receptors, cytosolic DNA sensors, and NOD-like receptors, sense exogenous pathogenic molecules and endogenous damage signals to maintain physiological homeostasis. Upon activation, PRRs stimulate the sensitization of nuclear factor κB, mitogen-activated protein kinase, TANK-binding kinase 1-interferon (IFN) regulatory factor, and inflammasome signaling pathways to produce inflammatory factors and IFNs to activate Janus kinase/signal transducer and activator of transcription signaling pathways, resulting in anti-infection, antitumor, and other specific immune responses. Palmitoylation is a crucial type of post-translational modification that reversibly alters the localization, stability, and biological activity of target molecules.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a highly malignant and aggressive gastrointestinal tumor. Due to its weak immunogenicity and limited immune, cell infiltration lead to ineffective clinical outcomes. Therefore, to improve the current prophylaxis and treatment scheme, offering a favorable strategy efficient against CRC is urgently needed.

View Article and Find Full Text PDF

Introduction: The innate immune response is an important first checkpoint in the evolution of an infection. Although adaptive immunity is generally considered the immune component that retains antigenic memory, innate immune responses can also be affected by previous stimulations. This study evaluated the impact of vaccination on innate cell activation by TLR7/8 agonist R848, as well as seasonal variations.

View Article and Find Full Text PDF

Epstein-Barr virus-induced 3 (EBI3) functions as a component of the heterodimer cytokine IL-27, which regulates innate and acquired immune responses. The expression of EBI3 gene is induced by Toll-like receptors (TLRs). Repeated treatment with imiquimod (IMQ), a TLR7 agonist, induces splenomegaly and cytopaenia due to increased splenic function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!