In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20 mol % ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2363188DOI Listing

Publication Analysis

Top Keywords

x-ray diffraction
12
fountain jet
12
liquid structure
12
situ x-ray
8
diffraction measurements
8
ultrasonic fountain
8
measurements capillary
4
capillary fountain
4
jet produced
4
produced ultrasonic
4

Similar Publications

The efficient removal of CO from exhaust streams and even directly from air is necessary to forestall climate change, lending urgency to the search for new materials that can rapidly capture CO at high capacity. The recent discovery that diamine-appended metal-organic frameworks can exhibit cooperative CO uptake via the formation of ammonium carbamate chains begs the question of whether simple organic polyamine molecules could be designed to achieve a similar switch-like behavior with even higher separation capacities. Here, we present a solid molecular triamine, 1,3,5-tris(aminomethyl)benzene (TriH), that rapidly captures large quantities of CO upon exposure to humid air to form the porous, crystalline, ammonium carbamate network solid TriH(CO)·HO (TriHCO).

View Article and Find Full Text PDF

Revealed Preferential Short-Range Anion Ordering in Disordered RbMOF (M = Nb, Ta) Pyrochlore-Type Oxyfluorides.

Inorg Chem

March 2025

Institut des Molécules et Matériaux du Mans (IMMM)─UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.

Describing the crystal structure of disordered materials with mixed-occupancy crystallographic sites is essential for understanding their physicochemical properties and designing new materials tuned to their targeted functionalities. Here, we investigate the structure of RbMOF (M = Nb, Ta) pyrochlore-type oxyfluorides using a multimodal approach that combines experimental and computational techniques. Rietveld structural refinement of powder X-ray powder diffraction (PXRD) data confirmed that these oxyfluorides are isostructural, and their average crystal structure is disordered.

View Article and Find Full Text PDF

Dual-filament regulation of relaxation in mammalian fast skeletal muscle.

Proc Natl Acad Sci U S A

March 2025

Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, United Kingdom.

Muscle contraction is driven by myosin motors from the thick filaments pulling on the actin-containing thin filaments of the sarcomere, and it is regulated by structural changes in both filaments. Thin filaments are activated by an increase in intracellular calcium concentration [Ca] and by myosin binding to actin. Thick filaments are activated by direct sensing of the filament load.

View Article and Find Full Text PDF

This study investigates the synthesis and characterization of Plant-Ag-graphene nanocomposites through a combination of spectroscopic and microscopic techniques, the nanocomposites were formed by catalyzing silver nanoparticles with plant extracts, and the resulting structures were analyzed using advanced instrumentation. In the FTIR analysis, distinctive peaks were observed at 3340 cm⁻1 (O-H stretching), 1740 cm⁻1 (C = O stretching), and 1050 cm⁻1. When compared to silver nanoparticles, the nanocomposites exhibited altered peak intensities, indicating modifications in chemical bonding.

View Article and Find Full Text PDF

Hexagonal (β-) NaYF and LiYF doped with trivalent lanthanide ions (Ln, , Er, Tm, and Yb) are well-known photon upconverting materials. This property is crucially determined by the precise location of the Ln dopant ions and their closest neighbouring ions in the host material. However, due to the inherent disorder of the crystal structures the atomistic structure of a disordered crystal such as β-NaYF is not unambiguously provided by X-ray diffraction techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!