A computer model of human cytochrome P450 2E1 (CYP2E1) three-dimensional structure and active site was constructed based on homology with crystallographic coordinates of CYP2C5 and CYP2C9. A high degree of secondary structure homology for human, mouse, rat and rabbit CYP2E1 was demonstrated. The location of heme and the supporting alpha-helices was established. CYP2E1, CYP2C5 and CYP2C9 active sites are distinguished by pocket size and their amino acid residues composition. Key amino acid residues forming the active site channel and substrate-binding cavity are presented. Active site surface area and volume for CYP2E1, CYP2C5 and CYP2C9 were calculated.

Download full-text PDF

Source

Publication Analysis

Top Keywords

active site
12
cyp2c5 cyp2c9
12
cytochrome p450
8
p450 2e1
8
cyp2e1 cyp2c5
8
amino acid
8
acid residues
8
[computer modeling
4
modeling cytochrome
4
2e1 three-dimensional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!