We describe an all-reflective interferometric autocorrelator designed to measure ultrabroadband optical pulses in the UV through IR spectral regions. By carefully choosing the device geometry we are able to obtain approximations for the nonlinear autocorrelation functions that reduce computation times to values acceptable for use in iterative pulse reconstruction schemes. We describe the optical design, autocorrelation functions, and present proof-of-principle experimental results measuring 20.6 fs pulses with a transform limit of 9.6 fs.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.31.003514DOI Listing

Publication Analysis

Top Keywords

ultrabroadband optical
8
optical pulses
8
autocorrelation functions
8
all-reflective high
4
high fringe
4
fringe contrast
4
contrast autocorrelator
4
autocorrelator measurement
4
measurement ultrabroadband
4
pulses describe
4

Similar Publications

Multispectral Integrated Black Arsenene Phototransistors for High-Resolution Imaging and Enhanced Secure Communication.

ACS Nano

December 2024

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China.

The demand for broadband, room-temperature infrared, and terahertz (THz) detectors is rapidly increasing owing to crucial applications in telecommunications, security screening, nondestructive testing, and medical diagnostics. Current photodetectors face significant challenges, including high intrinsic dark currents and the necessity for cryogenic cooling, which limit their effectiveness in detecting low-energy photons. Here, we introduce a high-performance ultrabroadband photodetector operating at room temperature based on two-dimensional black arsenene (b-As) nanosheets.

View Article and Find Full Text PDF

Broadband detection technology is crucial in the fields of astronomy and environmental surveying. Two dimensional (2D) materials have emerged as promising candidates for next-generation broadband photodetectors with the characteristics of high integration, multi-dimensional sensing, and low power consumption. Among these, 2D tellurium (Te) is particularly noteworthy due to its excellent mobility, tunable bandgap, and air stability.

View Article and Find Full Text PDF

Multi-Resonant Full-Solar-Spectrum Perfect Metamaterial Absorber.

Nanomaterials (Basel)

December 2024

School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

Currently, perfect absorption properties of metamaterials have attracted widespread interest in the area of solar energy. Ultra-broadband absorption, incidence angle insensitivity, and polarization independence are key performance indicators in the design of the absorbers. In this work, we proposed a metamaterial absorber based on the absorption mechanism with multiple resonances, including propagation surface plasmon resonance (PSPR), localized surface plasmon resonance (LSPR), electric dipole resonance (EDR), and magnetic dipole resonance (MDR).

View Article and Find Full Text PDF

Hybrid plasmonic metamaterials: towards enhanced ultra broadband and wide-angle solar absorption for energy harvesting.

Phys Chem Chem Phys

January 2025

Department of Electrical Engineering, Faculty of Engineering, University of Zabol, 9861335856 Zabol, Iran.

In this paper, we have investigated a hybrid metamaterial seven-layer solar absorber. The absorber has remarkable characteristics, including ultra-broadband perfect absorption capability, near-perfect absorption at wide angles, and insensitivity to polarization. The structure exhibits an average absorption of 98.

View Article and Find Full Text PDF
Article Synopsis
  • Nonreciprocal thermal radiation can differ in emissivity at specific angles, challenging traditional Kirchhoff's law, and creating opportunities for thermal emitters that don’t rely on magnetic fields.
  • The proposed mid-infrared thermal emitter operates between 12 μm to 20 μm with a wide angular range of 16° to 88°, utilizing a multilayered structure of Weyl semimetals and dielectrics.
  • This innovation optimizes emissivity across various angles and wavelengths, indicating potential applications in areas like radiative cooling, medical sensing, and energy conversion.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!