The development of high-power cw fiber lasers has triggered a great interest in the phenomena of nonlinear pump spectral broadening and cw supercontinuum generation. These effects have very convenient applications in Raman amplification, optical fiber metrology, and fiber sensing. In particular, it was recently shown that pump incoherence has a strong impact in these processes. We study experimentally the effect of pump incoherence in nonlinear pump spectral broadening and cw supercontinuum generation in optical fibers. We show that under certain experimental conditions an optimum degree of pump incoherence yields the best performance in the broadening process. We qualitatively explain these results, and we point out that these results may have important implications in cw supercontinuum optimization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.31.003477 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.
Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.
View Article and Find Full Text PDFNanophotonics
April 2024
FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00 Prague 8, Czech Republic.
Time-resolved terahertz spectroscopy is used to investigate formation and ultrafast long-distance propagation of electron-hole plasma in strongly photoexcited GaAs and InP. The observed phenomena involve fundamental interactions of electron-hole system with light, which manifest themselves in two different regimes: a coherent one with the plasma propagation speeds up to /10 (in GaAs at 20 K) and an incoherent one reaching up to /25 (in InP at 20 K), both over a macroscopic distance >100 μm. We explore a broad range of experimental conditions by investigating the two materials, by tuning their band gap with temperature and by controlling the interaction strength with the optical pump fluence.
View Article and Find Full Text PDFBesides the scattering structures, the energy transfer (ET) process in the gain medium plays a significant role in the competition between coherent (comprising strongly coherent components) and incoherent (consisting of weakly coherent or "hidden" coherent components) modes of random lasers. In this study, bichromatic emission random lasers were successfully created using polydimethylsiloxane (PDMS) replicas with grooved structures that imitate the inner surface of abalone shells as scattering substrates. The influence mechanism of the ET process from the monomer to dimer in the Rhodamine 640 dye on the competition of random laser modes was thoroughly investigated from both spectral and temporal dimensions.
View Article and Find Full Text PDFNano Lett
April 2024
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States.
Dual heterostructures integrating noble-metal and copper chalcogenide nanoparticles have attracted a great deal of attention in nonlinear optics, because coupling of their localized surface plasmon resonances (LSPRs) substantially enhances light-matter interactions through local-field effects. Previously, enhanced cascaded third-harmonic generation was demonstrated in Au/CuS heterostructures mediated by harmonically coupled surface plasmon resonances. This suggests a promising approach for extending nonlinear enhancement to higher harmonics by adding an additional nanoparticulate material with higher-frequency harmonic resonances to the hybrid films.
View Article and Find Full Text PDFPhys Rev Lett
March 2024
Institute of Experimental Physics I and Center for Materials Research (LaMa), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany.
A multiple pump-terahertz probe experiment enables the clear distinction between elastic and inelastic scattering of excitons with a free electron-hole plasma in (Ga,In)As multiquantum wells. Low plasma energies dictate the prevalence of elastic scattering by inhibiting inelastic processes due to the absence of final states for quasiparticles. Yet, an increased plasma energy results in a progressive destruction of excitons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!