We introduce a fully deterministic, computationally efficient method for characterizing the effect of nonlinearity in optical fiber transmission systems that utilize wavelength-division multiplexing and return-to-zero modulation. The method accurately accounts for bit-pattern-dependent nonlinear distortion due to collision-induced timing jitter and for amplifier noise. We apply this method to calculate the error probability as a function of channel spacing in a prototypical multichannel return-to-zero undersea system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.31.003426 | DOI Listing |
Rapid Commun Mass Spectrom
May 2022
Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria.
Rationale: The efficiency of lubricants strongly depends on the content of functional additives. In order to assess the chemical and structural changes taking place in the lubricating oil and its additives during operation, it is essential to develop a method for simple and prompt analysis.
Methods: Two single additives as well as a fully formulated engine oil were analysed using an atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) source coupled to a linear trap quadrupole Orbitrap XL hybrid tandem mass spectrometer and compared with results obtained by means of electrospray ionization (ESI) including additional low-energy collision-induced dissociation (LE-CID).
Eur J Mass Spectrom (Chichester)
June 2015
Institute for Biochemistry- Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany. European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany.
LG121071 is a member of the tetrahydroquinolinone-based class of selective androgen receptor modulator (SARM) drug candidates. These nonsteroidal compounds are supposed to act as full anabolic agents with reduced androgenic properties. As SARMs provide an alternative to anabolic androgenic steroids, they represent an emerging class of potential doping substances abused by athletes for illicit performance enhancement.
View Article and Find Full Text PDFMetabolism
September 2013
Center for the Study of Animal Science, ICETA, University of Porto.
Mass spectrometric approaches have been fundamental to the identification of metabolites associated with steroid hormones, yet this topic has not been reviewed in depth in recent years. To this end, and given the increasing relevance of liquid chromatography-mass spectrometry (LC-MS) studies on steroid hormones and their metabolites, the present review addresses this subject. This review provides a timely summary of the use of various mass spectrometry-based analytical techniques during the evaluation of steroidal biomarkers in a range of human disease settings.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
January 2013
Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany.
Rationale: The efficiency of Sirtuin1, a major target for the treatment of various metabolic disorders such as inflammation and type 2 diabetes mellitus, can be modulated via low molecular mass SIRT1 activators (e.g. resveratrol, SRT1720, and SRT2104).
View Article and Find Full Text PDFAnal Chem
September 2009
Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA.
Photodissociation with 157 nm light was implemented in an ABI model 4700 matrix-assisted laser desorption ionization (MALDI) tandem time-of-flight (TOF) mass spectrometer for peptide analysis. With a homemade computer program to control the light timing based on the m/z of each precursor ion, the photodissociation setup was seamlessly automated with the mass spectrometer. Peptide photodissociation in this apparatus yielded fragments similar to those observed in previous experiments with a home-built tandem-TOF mass spectrometer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!