Cross-phase modulation bandwidth in ultrafast fiber wavelength converters.

Opt Lett

Siemens Networks S. A., Amadora, Portugal.

Published: December 2006

We propose a novel analytical model for the characterization of fiber cross-phase modulation (XPM) in ultrafast all-optical fiber wavelength converters, operating at modulation frequencies higher than 1 THz. The model is used to compare the XPM frequency limitations of a conventional and a highly nonlinear dispersion shifted fiber (HN-DSF) and a bismuth oxide-based fiber, introducing the XPM bandwidth as a design parameter. It is shown that the HN-DSF presents the highest XPM bandwidth, above 1 THz, making it the most appropriate for ultrafast wavelength conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.31.003408DOI Listing

Publication Analysis

Top Keywords

cross-phase modulation
8
fiber wavelength
8
wavelength converters
8
xpm bandwidth
8
fiber
5
modulation bandwidth
4
bandwidth ultrafast
4
ultrafast fiber
4
converters propose
4
propose novel
4

Similar Publications

This study reports the observation of complete orthogonally polarized Raman scattering (OPRS) in a 1.0-km high-birefringence fiber (HBF). An incident pump pulse at 1560 nm with an energy of 2.

View Article and Find Full Text PDF

Amplification of bursts of ultrashort pulses is very challenging when the intraburst repetition frequency reaches the THz range, corresponding to (sub)-ps intervals between consecutive pulses. Periodic interference significantly modifies conditions for chirped pulse amplification (CPA), leading to temporal and spectral distortions during CPA due to optical Kerr nonlinearity. Multi-pulse chirped amplification to mJ energies may lead to a pronounced degradation of burst fidelity and the appearance of periodic temporal satellites after de-chirping the amplified waveform.

View Article and Find Full Text PDF

Stabilized 30 µJ dissipative soliton resonance laser source at 1064 nm.

Sci Rep

November 2024

Laser Spectroscopy Group, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland.

We demonstrate the first successful stabilization of a dissipative soliton resonance (DSR) mode-locked (ML) laser source using straightforward techniques. Our setup employed a figure-8 (F8) resonator configuration and a nonlinear optical loop mirror (NOLM) to achieve stable mode-locking, generating 1064 nm rectangular pulses with a 3 ns duration at a repetition frequency of ~ 1 MHz. The pulses were boosted in an all-fiber amplifier chain and reached 30 µJ and 10 kW peak power per pulse at 30 W average output power.

View Article and Find Full Text PDF

This paper demonstrates a Verilog-A compact photonic model based on coupled-mode theory for nonlinear interactions, including four-wave mixing (FWM) and cross-phase modulation (XPM), to present a general framework and methodology for modeling nonlinear interactions in electronic-photonic co-simulation. The model is compatible with existing electronic design automation (EDA) platforms and can support rapid electronic-photonic co-simulation. It avoids describing the complicated physical process of the FWM and provides an easy way for system designers to monitor the dynamics of the critical optical parameters, thus accelerating the co-design and co-optimization of the electronic-photonic hybrid systems incorporating FWM.

View Article and Find Full Text PDF

Octave-wide broadening of ultraviolet dispersive wave driven by soliton-splitting dynamics.

Nat Commun

October 2024

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai, 201800, China.

Article Synopsis
  • Coherent dispersive wave emission plays a key role in soliton dynamics across various nonlinear optics platforms, but generating efficient, ultra-broad bandwidth waves has been challenging due to resonance limitations.
  • This study reveals a new approach where the dispersive wave emission process is strongly coupled with the driving pulse's dynamics, leading to high-efficiency coherent dispersive wave generation in the ultraviolet range.
  • The process also produces a temporally-delayed ultrashort pulse that overlaps with the dispersive wave, resulting in significant spectrum broadening, which is valuable for applications like time-resolved spectroscopy and ultrafast electron microscopy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!