A recent hypothesis to explain the recurrence of bluetongue disease after winter seasonal absences of the vector has suggested a role for persistent infection of sheep. This report presents combined independent work from two laboratories investigating the possible recovery of Bluetongue virus (BTV) over a protracted period after infection of both sheep and cattle. Prior to infection with either cell-culture-adapted or non-culture-adapted BTV, sheep were subjected to a preliminary exposure to Culicoides sp. insects, which reportedly facilitates recovery of virus from infected sheep several months post-infection (p.i.). A series of skin biopsies at different intervals p.i. was used to establish skin fibroblast (SF) cultures from which attempts were made to detect virus by isolation and by molecular and immunological methods. Also examined was the effect on virus recovery of additional exposure to Culicoides sp. prior to skin biopsy during the post-inoculation period. A herd of cattle sentinels for surveillance of natural BTV infection in northern Australia was monitored prospectively for seroconversion. Evidence of infection initiated attempted virus recovery by establishing SF cultures. It was found that in both cattle and sheep there was not a protracted period over which BTV could be recovered from SF cultures. The data do not support a general hypothesis that BTV persists in either sheep or cattle.

Download full-text PDF

Source
http://dx.doi.org/10.1099/vir.0.81653-0DOI Listing

Publication Analysis

Top Keywords

skin fibroblast
8
infection sheep
8
protracted period
8
sheep cattle
8
exposure culicoides
8
virus recovery
8
sheep
7
virus
6
cattle
5
infection
5

Similar Publications

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.

View Article and Find Full Text PDF

To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.

View Article and Find Full Text PDF

Hydrogels of Poly(2-hydroxyethyl methacrylate) and Poly(N,N-dimethylacrylamide) Interpenetrating Polymer Networks as Dermal Delivery Systems for Dexamethasone.

Pharmaceutics

January 2025

Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria.

: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone (DEX). : The two types of IPNs were analyzed for their rheological behavior, swelling characteristics, and drug-loading capacity with DEX.

View Article and Find Full Text PDF

Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!