Recent research on foveal structure and reading suggests that the two halves of a centrally fixated word seem to be initially projected to, and processed in, different hemispheres. In the current study, we utilize two contrasting structures in Chinese orthography, "SP" (the semantic radical on the left and the phonetic radical on the right) and "PS" characters (the opposite structure), to examine foveal splitting effects in event-related potential (ERP) recordings. We showed that when participants silently named centrally presented characters, there was a significant interaction between character type and hemisphere in N1 amplitude: SP characters elicited larger N1 compared with PS characters in the left hemisphere, whereas the right hemisphere had the opposite pattern. This effect is consistent with the split fovea claim, suggesting that the two halves of a character may be initially projected to and processed in different hemispheres. There was no such interaction observed in an earlier component P1. Also, there was an interaction between character type and sex of the reader in N350 amplitude. This result is consistent with Hsiao and Shillcock's [Hsiao, J. H., & Shillcock, R. (2005b). Foveal splitting causes differential processing of Chinese orthography in the male and female brain. Cognitive Brain Research, 25, 531-536] behavioural study, which showed a similar interaction in naming response time. They argued that this effect was due to a more left-lateralized network for phonological processing in the male brain compared with the female brain. The results hence showed that foveal splitting effects in visual word recognition were observed in N1 the earliest, and could extend far enough to interact with the sex of the reader as revealed in N350.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1876781 | PMC |
http://dx.doi.org/10.1016/j.neuropsychologia.2006.10.001 | DOI Listing |
Ophthalmol Sci
October 2024
Genentech, Inc., South San Francisco, California.
Purpose: The region of growth (ROG) of geographic atrophy (GA) throughout the macular area has an impact on visual outcomes. Here, we developed multiple deep learning models to predict the 1-year ROG of GA lesions using fundus autofluorescence (FAF) images.
Design: In this retrospective analysis, 3 types of models were developed using FAF images collected 6 months after baseline to predict the GA lesion area (segmented lesion mask) at 1.
Indian J Ophthalmol
January 2025
Department of Retina and Vitreous, University of Pittsburgh School of Medicine, Medical Retina and Vitreoretinal Surgery, Pittsburg, PA, USA.
Purpose: To evaluate various supervised machine learning (ML) statistical models to predict anatomical outcomes after macular hole (MH) surgery using preoperative optical coherence tomography (OCT) features.
Methods: This retrospective study analyzed OCT data from idiopathic MH eyes at baseline and at 1-month post-surgery. The dataset was split 80:20 between training and testing.
Invest Ophthalmol Vis Sci
October 2024
UCL Institute of Ophthalmology, University College London, London, United Kingdom.
PLOS Digit Health
August 2024
Department of Bioengineering, University of Oregon, Eugene, Oregon, United States of America.
There is a growing interest in using computer-assisted models for the detection of macular conditions using optical coherence tomography (OCT) data. As the quantity of clinical scan data of specific conditions is limited, these models are typically developed by fine-tuning a generalized network to classify specific macular conditions of interest. Full thickness macular holes (FTMH) present a condition requiring urgent surgical repair to prevent vision loss.
View Article and Find Full Text PDFFront Ophthalmol (Lausanne)
April 2024
National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.
Purpose: To characterize retinal structural biomarkers for progression in adult-onset Stargardt disease from multimodal retinal imaging in-vivo maps.
Methods: Seven adult patients (29-69 years; 3 males) with genetically-confirmed and clinically diagnosed adult-onset Stargardt disease and age-matched healthy controls were imaged with confocal and non-confocal Adaptive Optics Scanning Light Ophthalmoscopy (AOSLO), optical coherence tomography (OCT), fundus infrared (FIR), short wavelength-autofluorescence (FAF) and color fundus photography (CFP). Images from each modality were scaled for differences in lateral magnification before montages of AOSLO images were aligned with en-face FIR, FAF and OCT scans to explore changes in retinal structure across imaging modalities.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!