Hair cells express a complement of ion channels, representing shared and distinct channels that confer distinct electrophysiological signatures for each cell. This diversity is generated by the use of alternative splicing in the alpha subunit, formation of heterotetrameric channels, and combinatorial association with beta subunits. These channels are thought to play a role in the tonotopic gradient observed in the mammalian cochlea. Mouse Kcnma1 transcripts, 5' and 3' ESTs, and genomic sequences were examined for the utilization of alternative splicing in the mouse transcriptome. Comparative genomic analyses investigated the conservation of KCNMA1 splice sites. Genomes of mouse, rat, human, opossum, chicken, frog and zebrafish established that the exon-intron structure and mechanism of KCNMA1 alternative splicing were highly conserved with 6-7 splice sites being utilized. The murine Kcnma1 utilized 6 out of 7 potential splice sites. RT-PCR experiments using murine gene-specific oligonucleotide primers analyzed the scope and variety of Kcnma1 and Kcnmb1-4 expression profiles in the cochlea and inner ear hair cells. In the cochlea splice variants were present representing sites 3, 4, 6, and 7, while site 1 was insertionless and site 2 utilized only exon 10. However, site 5 was not present. Detection of KCNMA1 transcripts and protein exhibited a quantitative longitudinal gradient with a reciprocal gradient found between inner and outer hair cells. Differential expression was also observed in the usage of the long form of the carboxy-terminus tail. These results suggest that a diversity of splice variants exist in rodent cochlear hair cells and this diversity is similar to that observed for non-mammalian vertebrate hair cells, such as chicken and turtle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2006.07.023 | DOI Listing |
Cell Mol Life Sci
January 2025
Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, China.
Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
College of Life Sciences, Liaoning Normal University, Dalian 116000, Liaoning Province, China.
Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen 518000, China. Electronic address:
Dermal papilla cells (DPCs) are a crucial subset of mesenchymal cells in the skin responsible for regulating hair follicle development and growth, making them invaluable for cell-based therapies targeting hair loss. However, obtaining sufficient DPCs with potent hair-inducing abilities remains a persistent challenge. In this study, the Food and Drug Administration (FDA)-approved drug library was utilized to screen small molecules capable of reprogramming readily accessible human skin fibroblasts into functional DPCs.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea.
We previously demonstrated that C-X-C Motif Chemokine Ligand 12 (CXCL12) is primarily secreted by dermal fibroblasts in response to androgens and induces hair miniaturization in the mouse androgenic alopecia (AGA) model. However, the direct effects of androgen-induced CXCL12 on dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs) have not been demonstrated. First, we compared single-cell RNA sequencing data between mouse and human skin, and the results show that CXCL12 is highly co-expressed with the androgen receptor (AR) in the DPCs and DSCs of only human hair.
View Article and Find Full Text PDFInflammation
January 2025
Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong, China.
The aim of this study was to investigate how ultraviolet B (UVB) light regulates AP-1 expression via the β2-adrenergic receptor (β2-AR) in epidermal keratinocytes, which in turn regulates melanin synthesis in melanocytes, thereby modulating downstream melanin production in skin hair follicles and altering mouse skin color. We established a UV-irradiated mouse model to investigate the effects of UV radiation on changes in skin color. By measuring changes in the expression of genes related to cutaneous sympathetic nerves, norepinephrine synthesis and melanin synthesis, we investigated the relationship between β2-AR expression and cutaneous melanogenesis and determined the localization of β2-AR in cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!